


## 内 容 䬻 介

数管及图需計数管的制备和性能。在盖革計数管一草中；敍述了盖萃管的
章中則分別詳細地介紹囟素管的制备方法和管子的性能，也介解了強㵂管的性能。

本书丙容践近曷眻，对莠加原子能高业的实际工作者很有用，可供我国参如和平利用原子能倖业的广大科学技术干部閻壊，也可供对原子能学科感兴趣的一般讙者閱說。

## 甜 ，数 管

褊 者 安国科学院障子能矿究所
出版者 科 学 出 版 欮


印刷者 古 国 科 学 蹚 印 刷 厂
总經售 新 华 咅 居

1960年1月第一次印形
开本： $850 \times 1168 \quad 1 / 32$
（京） $0001-9,000$
时张：3 5／16
定分： 0.50 云

## 目 录

前言 ..... 1
第一章 盖革有机阡数管 ..... 2
§ 1 盖革有机部数管的工作原理 ..... 2
§2 設計盖革有机計数管童者虑的問題 ..... 3
 ..... 4
§4 鈡詈形 $\beta$ 管的結构 ..... 5
§5 检驗及性能 ..... 6
5.1 玶． 5.2 死时間， 5.3 滥度花应． 5.4 稳定㭫． 5.5 寿命． 5.6 本底。
$\$ 6$ 标关 $\boldsymbol{\beta}$ 訶数管的几点經验 ..... 12
§7 吹气践的計数管 ..... 13
§8 使用把路采件 ..... 15
的使用說明。
第二章 南素管的制媭和炎能 ..... 31
§ 1 导言 ..... 31
§2 國素营及强流管的制备 ..... 33
2.1 材料的处理， 2.2 完制方法． 2.3 縨果．
§3 菌索管的㭫能 ..... 40
性。3．5故电的传探改发光晲象，3．6振深． 3.7 結論。
§4 强流管的性能 ..... 68
4.1 強蔵管的放电特柱． 4.2 强流管的电流特性及其与計数特性的联采．4.3 强流管的是程， 4.4 強流管的最大电流。 4.5 在設幛利使用强流管中的一些考䛂， 4.6 結論。
附录 ..... 88
§1 有关公武之推淀 ..... 88
学获的几率与新数損失。
52 匈素 $\boldsymbol{\rho}$ 管 ..... 97
53 稳压管 ..... 98
§4 备种盖革有机計数管 ..... 99

前 言

在 1958 年大跃进的基础上，为了广泛地开展和平利用原子能的事业，中国科学院原子能研究所从事于盖革計数管工作的同志，破除了迷位，将有关益革管的部分工作整理出来，写成本书。

本书共分两部分。在第一部分中，除了必要的一些基本方法及資料外，考数枋料是原始的。在制造工艺方面，我偏着重介紹㔗些不酱要特㘶設备与条件的方法，以利推广；至于把近代电真空技禾引用到計数管王艺中来，凡是有条件的单位坞可自行解决，故书中一概格去不談，計数管的性能䋊定，琏与則試条件，特別是电子学电路的特性有关，为此，我們对使用条件及电子学电路的特性及其測㢦方法的介紹也給以一一定的篇幅，希空不仅对制造者有所帮助，而且对使用者她能提供一些数据。

卤素討数管是一种实用价值很高的探測元件，在一般測量仪器中已有取代有机猝灭計数管之鉻。它的特性，故电过程及制造办法与普逼的有机俵灭㖕数管都有所不同，而了解这些特点，对子使用与制造这些要数管均有很大的好处，因此，我們把根据本实驗室的工作在1955年底写成的＂岗索計数管和強流管的制备及其放电机构的研究＂—文作为本书的第二部分度附录，这里我僴全按原著发表，至于1955年以后的工作及交献資料，—概不再补充或引䟚。値得提一下的是，正如文中所討詇的，杀卤索管中，穹間电荷的㶱灭作用已手不是必不可少的，所区完全可以控腰一般計数管中对阴报和阳报形状及大小的制限，而制造出各种特殊形状及 ：用途的計数管。

我們的杢作炋只是开始，不踚对訐数管应用的条件或計数管内在規律，都豾缺天采統与深入的研究。因此，本书不免存在着很


## 第一章 盖革有机計数管

## §1．盖革有机計数管的工作原理 ${ }^{[1]}$

盖革有机計数管是气体电痗探測器的一种，最常用的形式是充以情性气体（氢气），附加少量猝灭气体（有机蒸气）之同䊘圆桂的二极管。两极間所加电压为千优上下。

电高輻射进入管内，在气休中产生电子。电子在电場作用下向綵极（陮极）加速，接近秝极时，由于強电場作用，使得电子与气体分子磁撞，不均每两次之間获得的能量大于゙或等于管中气体分子的电离电位时，这时有可能与管內气休分于产生磁嘈电离，从而产生电子雪崩。借放电中产生的光子作用，故电沿着整根綵极传播，直至正离子鞮形成降低繗极附近的电場至不能产生磁撞电离 （空間电荷猝灭）为止。每次放电䅂了，电子全部已到达絲极，而正高子仍停留在原㛎位昷（以上两点，都是极端近似的說法）。空电堨的作用下；正度子鞘向阴极运动，这时綉极电压相应地产生变化脉冲，借助电子学仪器将脉冲記录下来，由此得知昕探測的輻射数目．

随着正高子的运动，䖻极附近的电堨枯应地烣复。当正高子豧运动到览界距度（开始产生碰愦电高的距离，此距高是由电場強度与龙气压力比値的承数）时，又能使蝠射产生的电子与气体分子发生础摛电裏，于是重复上一讨程，进入正常工作状态。停止工作所経历的时間称为計数管的死时間，一般約几十至二，三百徽秒。具体数值由㖕数管的几何形状，宎气成分，压力，作用电压等所决定．

在放电过程中，獆灭气体主要起着猝灭正䄜子在阳䧉附近产生电子的作用．与电子雪崩的同时，还产生了大量的光子．光子

被㶱灭气体吸收产生光电子（猝灭气体在放电过程中产生分解出是可能的）在电揚拃用下，电子被加速，号起新的雪崩，如此継續下去，引起放电传播 ${ }^{[2]}$ 。整个过程是在綝极附近 ${ }^{[3]}$ 发生的，因此放电沿差緌极传播。 由于充气主要是惰性气体，鞘中絕大部分躬为挤性气体的正离子。情性气体的正离子在向阴极运动途中，由于电荷交換，与猝灭气体分子发生碰䭪时，夺取猝灭气体分子中的电子而自己形成中性原子（由于能量关系，逆过程不可能发生）。因此到达际极的几乎全是㶱灭气体的正漓子。猝灭气体的正离子在防极附近中和而自行分解——超剪分解，不产生次級电子引起乱真計数———自猝灰。事实上，这种猝灭不是絕对的，情性气体正䀫子仍有一定机会在明极附近中和，产生次経电子引起乱真計数。乱真訃数与每次放电电荷量成正比。乱真計数的存在，使計数管的 ＂坪＂短而斜，甚至＂严重到根本沒㘧的存在。

由于故电中开子硬空間电荷的作用，盖革訐数管每次放电的脉冲高度与电高輻射的初始电亩无关（与郭数管国极有效长度有关），脉冲高度高而整齐。园此盖革管配用的电子学綫路要求简单．对探測带电輻射（ $\beta, ~ \alpha$ 等），效率約 $100 \%$ ；而探測 $\gamma$ 輻射，則䙹其能量而定，一险对 $\gamma$ 的計数效率約 $1 \%$ 。

随着計数管的使用，管中有机气体不断地分解 ${ }^{[4]}$ 成非㮦灭气体或有害气体，从而限制了計数管的使用寿合，有机計数管的使用寿命約在 $10^{7}-10^{\circ}$ 次訃数。

有机計数管制造与使用方便，是最大优点，寿命的限制仅为美申不足。

## §2．設計益革有机計数管应考虑的問題

几何大小 討数管在一定充气条件下，某一确定的阳极牛径与阴坡半径之比，对应有一最好的坏曲緒 ${ }^{[5]}$ 。最常用的阳极牛径与阴极手径之比为 $1 / 200$ 。

計数管的有效长度（凅极的上度），下眼等于或略大于其阴极的血径，上限由其需要失定。

套管問題 在討数管阳极两端常晨上玻璃㤰管，此集管能确保䛠数管的性能。套管伸入阴极内的长度为阴极直径的 $2 / 3$ 时較为活宜，套管粗細問題不大，一般用 2 至 3 毫米（卤素計数管一般采用 3 毫米粗細〉的㤰管性能較好为适宜。

集管通问阳极的一端，应事先用玻琌吹奵烧蛔。阳极細絲和阳被引綫点焊处，必須藏在套管内，此点距萇管端約为 5 到 15 毫米远。計数管尾巴一蝡，阳极末端应确保烧在玻璃奎管内，絕对禁工需露在奪管外面．这里所挰各点，都是为了免除計数管工作时产生尖端放电，影响計数管的栍能。

## §3．有机計数管在漬空系統上应注意的問題

窉空系統 有机副数管集用的萁空系統如图1．1。


有两点值得說明：1．有机 $\beta$ 管与有机 $\gamma$ 管的真空系䟲区別在于排管的支架处：$\gamma$ 管的排管被电炉底盘支持；$\beta^{\prime}$ 管的排管被木橙支持。2．图上排管前拉結的小孔（直径 0.2 毫米），量为了使及計数管在抽气时免除管內压力的哭然降低致使其云母窞破裂而做的装置。当管内压力已降至 0.1 毫米汞柱时，打开活門 1 进行排气。

煨烤 为了除去水汽，在冭气之先，計数管需要在萁空中边抽气边烘烤（ $\beta$ 管不烤，而将抽气时間拉长），烘烤温度为 $200-250^{\circ} \mathrm{C}$ ，时間 4－2 小时。

檢漏 充气之先，必須检查所充气体是否编气．捡查方法：一是䨐有机蒸汽的怉和蒸汽压；一是用高頻检漏器看放电顏色。充气时先充有机气体到指定压力，然后关掉开关 2 ，抽掉采統内剩余的有机气体，然后再㳘氯气至指定压力，再亣活門 2 ，这时压力降低，再加充氧气至指定压力，关掉活門 2 ，过手小时后師可进行測量。

完气压力 对不同几何大小的討数管要得到良好的性能，要冰充气总压力不局。例如我們做了五种几何大小的管子，充气总压力各不想同，而得到良好性能，部分数据見下表。

表1．1 几何夲小与充气关采

| 阳极䐜径 （海米） | 阳极直径 （空米） | 充气成分，比俐 |  | 坪曲絞 （代） | $\left[\begin{array}{l} \text { 栎狳 } \\ \% / \text { 伏 } \end{array}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 350 | 0.125 |  | 8 | $\geq 300$ | $\leqslant 4$ |
| 300 | 0.125 | 二甲氧基維甲酸，赏；1．5：8．5 | 8 | $\geq 300$ | $\leqslant 4$ |
| 200 | 0.100 |  | 10 | $\geqslant 300$ | $\leqslant 4$ |
| 150 | 0.075 |  | ${ }^{10}$ | $\geq 300$ | $\leqslant 4$ |
| 100 | 0.050 |  | 15 | $\geq 300$ | $\leqslant 4$ |
| 280 | 0.125 | －酒猜，澸；1：9 | 12 | $\geqslant 300$ | $\leqslant 4$ |
| 200 | 0.100 | 酒鼡，氳； $1: 9$ | 18 | $\geqslant 300$ | $\leqslant 4$ |
| 280 | 0.125 | 成烷，曶；0．8：9．2 | 100 | $\geq 300$ | $\leqslant 4$ |
| 200 | 0.100 | 成烷，缶；1．3：8．7． | 100 | $\geq 300$ | $\leqslant 4$ |
| 280 | 0.125 | 乙酸，曶；1：9 | 100 | $\geq 300$ | $\leq \leq 4$ |
| 200 | 0.100 |  | 100 | $\geqslant 300$ | $\leqslant 4$ |
| 100 | 0.050 | 乙梄，氯； $1: 9$ | 100 | $\geqslant 300$ | $\leqslant 4$ |

誛內所罙用主要原楼如下：
（1）玻倳和釷絲全系国产。

（3）石油醚为北京化学試剂研究所出产的分析純。
做普子数管时，如果切实地按照以上几点要求（贯素管特殊要求見第二章）去做，就能故岀性能良好的盖革有机討数管。

## §4．鐘罩形 $\beta$ 管的結構

我們不打算对各种形式与种类的盖革有机計数管一一开一紹。常用几哥大小（ $\beta$ 与 $\gamma$ 管都适用）的有机訣数管已列表于上。現在

只柆介紹一下金属鉓畕形 8 管 ${ }^{[6]}$ 。
經对念次㖻驗，采用如图1．2的結构。





些楚，外真径 37.5 亳米；9—抽気管，直径为 3
余系处均用阿拉地 I 胶到挼。


图1．3 瑢璃緭線子
A—玫离空心；B—点捍处；
C－玻璃陎，在未抽气时＂它的


## §5．檢驗及性能

盖革計数管的检验一般为：1．坪，2．死时問，3．温度效应，4．稳定性，5．寿命，6．本底等六部分；其中測量坪出緒是每只管子必須經过的工序，也是最后检驗产品是否合格的标准，检驗常用的仪器是定标器。 华主要由电源，瑐䟿，定标与机械計数器及高压等四 ＂部分构虔，图1．4表示国产 64 定标器的仪面图。測量を前，要先对定标器本身进行检李。 主要检査定标是否正常，高压是否漏电而


图 1.4 定标器仪面图
引起假計数。定期对高压电压用静电計进行校正。
另外，在測量坪曲馢时，高压应从零逐步升高，以乭因电压対高而致使計数管进入連纕放电而綋短詁数管的使用友命。如果发現討数管連續故电，应立則降低高压，使放电停止。

測最㖕数管的坪曲綫时应蔽光。
5.1 坪 測坪时，先还原使所有计数掲泡熄灭；然后打开計数开关，調节高压粗細旋扭，一直調到开始討数，这个电压就算起始电压（其实，此电压略高于起始电压），再豕丞升高电压，进行計数。

測坪应按故射源的强弱，把管子放在适当距离，固定在支架上，測 $\gamma$ 管时，射綫源（ $\gamma$ 源）尽量对准管身的中聞部分；測 $\beta$ 管时，射綫源（ $\beta$ 源）对准管窑。計数率（机械討数管 64 进位）以每分釬 60－1．20次为宜，每隔 50 伏或 30 伏測一次。

我們使用的定标器，前被是經过改装的（見本章§8．1）。对于定型 $\beta$ 管分扗充蔔气加酒精蒸气制成的 105 只管，都合要求（坪长 200 优；坼斜每 100 伏小于 $5 \%$ ）；平坞坪长是 360 伏，最小坪长 300 伏，最大坪斜每 100 伏 $4 \%$ 。 分批充氯气加二甲氧基縮甲醛 $\left[\mathrm{CH}_{2}\left(\mathrm{OCH}_{3}\right)_{2}\right]$ 蒸气的 186 只管，也都合要求；平坞坪长是 300 伏，最天坏斜每 100 伏 $4 \%$ 。典型坪曲綫如图 1.5 所示。
5.2 死时間 ；死时間的检験是用同步示波器（我們采用苏联


25－И示波器）直接測显 ${ }^{[3]}$ 的，䙁路如图1．6所示。測量时使計数率較高，比襄容易䘽測波形，若在示波器輸入前面加一一电容（10 —50微微法）＇，波形更为清晰。 匐—二甲氧基縮甲醛充气管，超过电压在 100－300伏时，暞应的死时間为 250－100微秒，在同样超过电压时，豈一酒精充气管的死时間发上面充气管略大。


图1．6 用示波器測死时間綫路蕳图
5.3 温度效应 ${ }^{[7]}$ ，温度效应是检驗管子在不同温度下性能变化的情况。測量时，将要測的管子和㹩在密封的玻㨅管内的固体 $\gamma$ 源捆在一起，源位于諸管中央，且固定住，每改变一个温度測一个坪，眉坪随温度的变化。

低温㢦驗是在广口杜瓦㼥队进行的。将已捆好的管經过輘长
将液体氮或液体二氧化碳注入杜瓦㼛内，通过混差电偊讀出温度。

待温度稳定后，即測量坪，为了使取得的数据更为准确，可以通过升温重复一大，即将降温后的洓制容器从杜瓦摂中取出，鄗其湿度逐䡛升高，待升至所要求的温度时，＂立刻再将它放入杜瓦㧚内保温，进行測量．这里采用机油，是由于它的电絶緣性好，可以防止因水汽㷋結而漏电，并且疑固点也低。注意，倒入液体氮时要順著杜瓦摇壁緩慢地刨，避免杜瓦瓶受際冷致炸裂。
中央，妒底垫一块厚的石棉板。＂由于妒内上部温度較下部高，应在盖在炉口上的石棉板上鉆一些孔，使妒内温度意向为匀．通过可開变压器，改变电炉的电源电压，从而控制温度，作出温度改变相应的坪曲繶。注意，当温度高出 $150^{\circ} \mathrm{C}$ 时，要防止管子引緎的䥀焻 ＂接头朌落，避免管子尤其是装射䋨源的管子捹破。若使用温水来改变温度，就要注意漏电的問题，因为水汽多，就容易引起漏电。

按照上述方法，对自制两只 $\gamma$ 管进行了測量，氧一二甲氧基縮甲醛充气的管子在 $-30-+100^{\circ} \mathrm{C}$ 范围队工作正常，温度与起始电压的关采如图 1.7 所示。氧一酒棈充气管在 $20-50^{\circ} \mathrm{C}$ 范国内
气管相近。鼠－乙醚充气管在 $10-35^{\circ} \mathrm{C}$ 范围内工作正喘。



图 1.7 起咍电压与温度关系 －，＋当同类的两只， $\boldsymbol{r}$ 管数据，

稳定性通过每隔一定时期測——坎坏来确定；而連縵工作稳定性是这样确定的：通过管子在起始电压以上 100 优处工作时，进行多次重复計数，作出时間一計数辝曲綫。 妶果实驗点坞与分布在一值綫两㑡，其誤差在統計誤美范围内，算是稳定性好。 注意，則星时要避光，避免其＂も射綫源与电波干扰，最好在鉛室内捄行。


图 1.8 坪与时間的关系

$$
\circ 57,7,4 \text { 谢; }+58,11,13 \text { 測; • } 58,12,23 \text { 测。 }
$$

匐一酒精充气的管子絽过約一年平的时間，所有管子的性能无显落变坏。图1．8表示坪随时間的变化㤢况．另外，做过多次気驗，这种充气管在二小时內連緽工作，討数率随时間的变化約在統賥誤差之內，与美国胜利仪器公司出品的同类管 VG 型 15 号比䭱如图 1.9 所示。
5.5 将命 計数管經讨若干次偖数后（坪寛变得小于 100 伏，坪斜大于每 100 伏 $5 \%$ ），綫路如图 1.10 的时候師訣作友命終結。

測量踌命的工作电压选在起始电压以上 100 伏的地方，可以凡只管子同时进行，高压公用，而每个管的电压差，由公用—300伏电源通过电位器調节。（源強約每分釬 $2-3 \times 10^{4}$ 炊計数，每隔一定时間量一次电压，以保持电压在一定值。 每陽一定时間測一次計数，求出本均計数率，在䛉数一定数目之后（比如 $10^{7}$ ， $5 \times 10^{7}$ ， $10^{8} \ldots \ldots$ ）量一豖坏。注意，量一只管子的計数时，其它管应停止工作，否盰会使量得的計数軗实际的为多，因为別的管的計数闰时也被計上了。＂如果彼此辟爾好，就无此現象。在整个实騟赴程古，管子要避光，因为管子随䒴工作时問的鏆长，光感可能公増強，造


图1．9．幛数率与时間的关系
毫克／㚜米 ${ }^{9}$ ；$\times$ 美国胜利仪㗊公司出品VG－15討数管。 $2 a \doteq 0.125$ 毫米，


-300 伏

## 罢 1.10 湘星孝畣䋛路簡图

成計数数目不准，基至使䇹子很快变环，不能䋛續工作。
以上。
5.6 本展 本底检驗是将管子放在丙衬1毫米鋁的 5 厘米厚
址其它射綏謜或电波的臣扰，每 10 分針或 20 分釬測一次討数，把

两次或多次測得的訶数平均，就可算出每分鈡計数．在周围沒有强的 $\gamma$ 源的情况下，在厚为 5 厘米的鉛室队，定型 $\beta$ 管的本底为每分釛 15－25 次討数。

## §6．有关 $\beta$ 訃数管的几点經驗

杼料选擐 在选用材料时，要考虑所选材料对計数管的性能是否有影响（此点适用于任何計数管），例如选用玟膍絕緣子及云母窗的密封枋料，經过試騟証明，只有当阿並地 I 胶封接后呈浅炎褐色（約在 $150^{\circ} \mathrm{C}$ 烤 4 到 8 小时）时，对計数管长期稳定性才影响不大．又如有机計数管的真空系新使用的活門油，經过試验跴明，只有阿皮柃（M 和 L）和硅脂对計数管性能影响不大：毝用䧋极材料时，一般用紫铜或黄矢，最好用唀琞阴极（見第一章），鋁防极对有机計数管性能起不良的影响。
的比侧（比例大小关系不大）时，总床力为 12 厘米贡柱时为好。这样充气的計数管性能远較文献上䛊的总压为 10 厘米昶柱时为好。空气和二甲疑基縮甲醛按8．5：1．5 比例时，总气压为 8 厘米时为好。

雲母破裂及封接戱漏气 云母封好后，烘堵和排气时有破驽与分层現象，这类管数占总管数的 $30 \%$ 。从咏云母到封接云母的整个过程中，尽量減少云母受伤，受折，剪云母时将云母夹在两层溥紙中間，用鋒利的前刀一元剪好。另外，在烘烤时，不能疑热或輯冷，应逐步升嗢与降温。这样做的結果，云母破裂和分层的管子数目降到 $10 \%$ 。

由于云母封接处滑气的管子原占总管数的 $50 \%$ 。最后将法兰盘直径改成比底盘內直径小 0.5 毫米，升在法兰盘上开了一斜坡，如图 1.2 中 8 的形式，这样就保跴了云母（云母直径与底盘內直径几乎一样大，使队好放入底盘內）封接处不漏气或少漏气．我诳在一次封接的 130 只管子时，没有一只是漏气的。

波璃絶緣子和玻璃珠，玻㻦絶線子与阶极相接触的下端，如

图1．3中 $A$ 外，必須烧成实心的，如果不烧成实心，由于玻琌微弱的导电而形成两个計数管，影响坪长与坪斜。 又如图 $B$ 处，为粗釷綜与細鵭綵点焻接头，如果此点不藏在玻璃萇管內（点焊头趾套管口約 5 毫米），就会产生放电。

阳极末端在烧玻㠃珠时容易变細（所謂細頸現象），以及珠的直径（一般略大于 1 毫米）过小，都会影响使用时的稳定性。在
的缺点。 对于珠小及細頸的計数管，只要在云母窞上（計数管外面）除上一层薄薄的较状石罢，使用时的稳定性就会有所改善。

村料的代用 $\beta$ 計数管壳如果采用玻璃壳，加上透明阴极，塱經济及省事，性能与金属管的无差別，葉至胜过＇t，但迭用底盘时要注意两个問题：1．底盘內徝径仍然較玻璃法兰盘徝径大 $0.5-1$毫米；2．烘堵时，为了防止因玻离与底盘（常用黃銅）膨脂采数不同而使玻璃产生破裂，应把底盘厚度事至 0.5 毫米（愈薄厽好），最好用 0.3 毫米厚的紫銅皮冲压成。管壳虵可用紫銅皮计压成。玻璃管壳与冲压管壳的采用，最活宜工业大量生产，金属阴极改用透明阴极，具有很大的經济意义，値得大力推广。

## §7．吹气式的計数管 ${ }^{[9]}$

如果要探測 $\mathrm{C}^{14}$ 或弱本底（聞或探測 $\alpha$ 射綫的存在）时，要求計数管的云母窗厘臤在每平方厘米1．5毫克以下，这样厚的云母窝不能采用以上所退方法进行抽气和充气。由于这样薄，手且直径等于惑大于 28 毫米的云母不能經受一个大气差的荜力，所以一抽气云碚就会破掉。此时可采取吹气式的方法进行抽气与充气。

吹气目的是将㖕数管内的空气用所充气体把它赶走，到空气完全被所充气体替換后将計数管封好取下即成。

在目前已知气体中只有氨气充到一个大气压时，咕数管的起始电压（䦔压）低于2000伏。

吹气熱置 如图1．11 与图1．12所示。
充気成分及比例 氮＋酒精 + 乙醁（乙醚体积为酒精的


椈 1.11 完气装置


图1．12 A瓶
$0.4 \%$ ），后二者放人冰中，在充气过程中州格保持在 $0^{\circ} \mathrm{C}$ 。吹气步驟
1．先将氧铜杼高气压表打开，然后怛慢打开低气压表，在氨气出气口接一検皮管，放入水中至連穔而均匀的出气泡时为止（低气压表上的指針指向 1 个大气压下）。应控制气压不要过高或过低。

2．将出气口橡皮管换成另一根无水的漓浩的橡皮管，接在盛


3．将 A 㼛（見图 1．12）倒立（不在冰中），使 A 据与計数管等容


4．洰立A備于冰中，如图 1．11．通氨約 10 分釬。測量計数管越始电压，至越始电压固定不变（說明管内空气已咆掉）系在 2000伏以下时，即将計数管中針头拉出。为了避免空气入内，将針尖㽞于B上端，封上抽气管郋成。

吹气管 吹气管之一一一大型 $\beta$ 計数管的管型如图 1.13 所示：它的坪曲綫如图 1．14．定型 $\beta$ 管的云母䇱改成每平方厘来 1毫克左右也行。起始电压在 1400 伏左右，性能良好。

最后談一下鼓形計数管（ $\beta$ 和 $\gamma$ 两种）。 t t的形状象敦，中心綵为一哑形綡，当中有一根接通鼓两面的金属柱，相当于一个环形



图1．13 大 $\beta$ 管（窞厚 3 酸完／厘米 ${ }^{3}$ ）


图1．14 呯曲綏㛁斜 $3 \% / 100$ 伏

以上，此管特別适宜于作 $\beta, ~ \gamma$ 符合計数用。
§8．使用电路条件
8.1 記录电路 計数管的訊号脉冲是用定标电路或計数率表电路来記录的。在这些电路中，需要考良与計数管配合的問戛，主－要是䡕入电路部分，郎把䛊号脉冲輔变为适于触发定标电路或計数㱖表电路的部分．

关于所需的吕敏度，可自計数輸出的脉冲电荷来考虑；图 E .15是有机計数管的脉冲电荷特性．当阳极系統的总电容 $C$ ．大于几个微微法时，电荷量䬦与外部电路无关，所以用最低触发电荷来表示电路的是教度較为确当。在电荷 $G$ 对超过电压 $V-V_{s}$ 的曲䋨上的轉折点以下，$q \sim \frac{V-V}{V_{0}}(V l / 1.8 \ln b / a) \times 10^{-12}$ ，此处 $l$ 为有效絲长（厘米）；$V_{0} \sim 100-200$ 伏，視管型而定．$a, b$ 各为阳，阴 ，极戈惩，$V-V_{s}$ 为超过电压（伏）。对一般計数管，如希空在超过电压不到 5 伏时師开始誩数，則电路应能記录电荷为 $3 \times 10^{-11}$ 進公的脉冲。对于綵短的言 数管如 $\beta$ 管或針状管，电路灵敏度还須


图1．15 有机部数管的䏡冲电藏曲蟣
提高．至于卤素計数管，由于輸出电荷較大，电路灵敏变可以略低。

另一个重要的参数是电路的翰入阻抗。这对卤索計数管特別重要，因为阳极系統的电容 $C_{0}$ 过大或阳极到高压电源或地的电阻过小，都会使管內放电江于強烈，而使得㟁变坏，死时間变长，寿命变短，甚至根本不能工作。故一般严格覟定卤菒管之串接电阻在 5－15兆欧間，$C_{0}$ 在 5－15微微法之間，这一点常被使用者忽略：对于有机評数管，外部电路影响员不明亚地表現在脉冲电荷与雨曲綫上，但一般訔为高的电路阻抗可以減少計数管国不候連楥放

电而摜坏的机会，而且据交献［10］报导，专命測量的結果他表明高阻抗电路是有利的。而有些特殊的有机管（如鋁壁管），想宜用很高的串阻（几十兆欧）來保护它。 与考虑灵敏度相类似，当絲㓱短时，所用的轁入阻抗应愈高。

另一参数是尤許最大脉冲：㤘超过电压較高时，脉冲将增大几十倍。对于不同类型的管子，最低与最高訊号能相差几百倍，此时仍要求定标器能正常工作，不致破＂卡住＂，或发生漏記和重复（一㰠記几狈），以及电路失教时間过长等毛病。

在分辨时間方面，一般电子管定标单位的分辨时間是足够短的．如果发生問题，主要与翰入电路有关。至于其他的性能，如在規定的市电电压和温度湿度的变化范围內及在規定的使用时間內要求电路圴能正常工作，在未接上評数管时即使加上最高电压他 ＇不致因漏电而产生假剧数等，因属于一一般电子学范围，茹不鳌述。

目前各国常用的註数器电路，除輸入电路电容对卤素管有时过大外，一般向能滿足上湈要求。但是一个最常見的使用上的錯嫨就是在計数管与計数电路間接上了过长的导綫，这样就增大了 $C_{0}$ ，降低了电荷灵敏度，升容易感受外界干扰而产生假湢数，并严重地損害了部数管的性能和可靠性。因此，除了計数管紧装在㖕数器旁边，并用很短的低电容闰心电纈連接之外，計数电路一定要装有与主体分开的脂置放大器或阴极跟随器，以满足前迅的要求。在具有施密特䍀別电路或类似电路的定标器如加上一用高跨导的五极管做的放大十余倍的前徝放大器（如果計数管距仪器太远，可用阴极跟随器作前置級，在仪器內再加一級放大兼倒相）。只要各級間的时間常数合适，常可以得到很好的性能，满足一般检驗与使用的需要。 另一个巧妙的力案是加上一数高倍的放大，使得任接上足够长的同心电續后仍具有足够的电荷灵敏度，而在計数管与电緮串一电阻与电容（图1．16）以保跴髙的阻抗＊，有时芸至可用这种方法把計数管放在距仪器百米以外而不用前贺級。

[^0]

图1．16 場加墒入阻抗的方法
根据以上所炦，最好䝒入阻抗，电荷灵敏度仅最大尤評脉高妁能列入产品的規格中。

以下討諭一下在一般实驗条件下，这些参数的測量。 关于輸入电容，㨁捼測量是較麻煩的，特別是在电子管工作时的有效輸入电容与未接电源时可能相差很多，如图1．17中曲綫1和2所示。这个差导主要来自电子管椆极与极极間电容的反僓，故与放大倍数（因而她与訊号幅度）有关。至于电荷灵敏度的估訐只需将阶跃脉冲綾过一很小的电容 $C^{\prime}$（如 $2 — 10$ 微微法）通到計数器，而沗其最低触发反压 $\Delta V^{\prime}$ ，則有

$$
C^{\prime} \Delta V^{\prime}=\left(C^{\prime}+C_{0}\right) \Delta V
$$



1——电子管加热快态；2——电子管不加热状态•。

如已知电压灵敏度，哪可求出 $C_{0}$ 与仪器的象荷灵敏庭 $C_{0} \Delta V$ ，而当 $C^{\prime}$ 很小或接近于計数管的杂散电容时，$C^{\prime} \Delta V$ 就等于接上剽数管后的电荷灵钽度，測量力法如图1．18．至于小电容可朵用冬 1.19 所示的同心圆筒电容，由于两端有保护环，中段到中心电极間的电容是很容易計算的，而整个电容可朵用計数管的結构来制遣，外型最好也与計数管相近，这样，使用起来最为方便。


图 1.18 毛苛灵敏度的猉量


图1．19 标准它客

最大尤許脉高的測最比較䟽煩，因为在某些电路中七是与輸入波形有关的，而把輸入端直接与脉冲发生器相連，所得波形常与实际情况不符。通过小电容传入阶跃脉冲的方法可以得到較近似的波形。所用脉冲最好能具有图1．20所示的形状，因为矩形波的正前沿有时会妨碍定标器的正常工作。利用与脉计发生器同步的示波器，来覌察各級波形，特別是鑑別器的輸出，以检查电路是否被阻塞或波形屠部的回击是否产生重复討数，常是很有效的。座接上計数管时，也可用同样方法来检査。

这畕应附帶提一下定标电路部分，虽然使用十进位定标器比


图 1.20 裸試波形

較方便。但 64 定标器由于比較簡单，使用得較为广泛。表示訂数次数的一种比較方㑑的方法是以机械計数器所示的数字为单苗，而把余数除以 64 㔙化作小数，例如 $142 \times 64+32+4+2=$ $=142 \times 64+38$ 可記作 $142.59(\times 64)$ ．如果把穹泡所代表的数字：32，16，8，4，2， 1 改标作 $0.50,0.25, ~ 0.13^{-}, 0.06,0.03,0.02^{--}$就可直接按十选制諸出余数，前例師可声出 $0.50+0.06+0.03=$ $=0.59$ 㲎不比百定标器费事很多。在前例中，前四氛泡示数 $a$ 为 6 ，后二気泡示数 $b$ 为 32 ，亦可自附表中査出 $\frac{a+b}{64}=0.59$ 。

64 定标器換算素

8.2 猝灭电路 自㮦式計数管虽本一定要用㮦灭电路，但与有矩形猝灭波的电子管猝灭电路配合使用，便具有极大的优点，尤其是在作精确測量的时候。只要猝灭电路哑有足够高的灵敏度与反应速度，猝灭波比計数管內电樆过渡的时間略长，即可使1．乱黄部数㳦少，坪曲䄉变平，2．延长使用寿命，3．死时間只由电路决

定，这便于精确修正計数。由于它的輸出信薷較大样且高度不变，所以定标器的䡆入电路司以簡化，而总的說来弄不多費电子管。因此，这种扎路値得大力提倡。 这种电路多以五极管或三极管单諧振湓器为基础，交献上巴发表很多，䒺不重复。
8.3 离压电源 虽然一般計数管的坪很筧，似乎可以不用稳压电源，保为了得到可鄯的結果与保护計数管，仍萓使用較好的稳床电源。电源的稳定度最好能达到变化小于 $1 \%$ 。实际上，常用的稳压电路很容易稳定到 $0.2 \%$ ；而且财不比稳定度为 $1 \%$ 的电路复杂。在簡单的不需要調整高压数値的仪器中，采用一級矣状放电管稳压（見图 1．18），常能得到满澺的結果．如需在不大的范围內调整高压，可将䈭状放电管的跼极接在可調节的电压上。


图1．21 門单的最犾效电䅎压綪路图
計数管所用的稳压电源，必須能防止电压超过某一指定的数値，有些稳压电源在通电以后的一段时間内电压，会偏高，要到电子管烧热后才起稳压作用。务需注意，这种电路一定要等灯絲烧热后于能接通高压开关。比較安全的使用法是在接通电源时把电压䏱整器故在最低位置。

有些高压电源的电压上昇极慢，这对測量坪曲綫很不方便，但对一般放射性測量工作靖无很大的妨碍，因为管子与工作电达都是固定的。 但在調整电压时必須注密这一点，以防在調到所雲工作电压后，实际上电压还在上昇。

稳压电源的电压指示最好能細一些，团为測量起始电压的变化，是了解計数管是否正常的很好的参考，一般活于盖格計数管使用的电源，其电压指示部分（电表䇅分压器）諽差常比挍大，有时会相差 $5-15 \%$ 。只要注意到各个电願的刻度是不够准确的，在实用上封不碍事。如需知渞正确的电压数値，則需經常进行校正，作出校正曲絨。

由于这些电源是为使用电流很少的計数营設討的，如用普通于伏表測量电源电压，根本不能得到有意义的結果，甚至健电源因急載过大而損坏。最好＂用静电伏特訐＊或用1．22所示的＂对頂法＂。其中 $V_{2}$ 是可靠的千优表，$E_{2}$ 是贯足够軨出电流的可調节高压电源。 $g$ 可以用 20,000 欧／伏的万能表。平时放在最高毞，当两池电压接近时，再轉到低档，直到 $g$ 两端的电位差为零时为止。用完后立到輔回高秥。 測定电源的稳压系数（輸入电压相对变化／輸出电压相对变化）通常出用此法。


国 1.22 高压电源校正国
好的于伏計有时不易得到。此时可采用下法：取 $0.5-0.2$ 級的微安討，車接上四根并联着的相同的功率輘大的碳膜电阻，做成
为串联，其量程臥增为 16 犃，䬣可用来校正高压。 如果微安計內䧋較大，則量程䚡大的犃数略低一些，可按欧姆定律計算改正。

图1．23所示是一种相当稳定的場压电源，用分压电阻串接 $R$ ，調整騟出电压。当串联管用 6 SN 7 时，稳压采数約为 100 ，而

[^1]用 6 H 2 П 时还可以更高一些。其最高辚出电压，几乎就是晏状放电稳钥管 $V_{4}, ~ V_{5}$ 的电压，所以长㽘問的稳定性几乎完全由稳压管决定。氛泡 $V_{3}$ 除可稳定通过 $V_{4}$ 的电流外，还可用作工作状态的指示灯，当供电不足时它会熄灭或関光。在高压端加上用輝光稳戌管稳压的輔助电源，手采用五极管作調整管，还偖作出为其他㤾测器用的更为稳定的它源。


图 1.23 高匡緶路图
应附带地提一下，用負高压供电是不很方便的，这个間质对金屈計数管来浬尤为突出，在用金属片作阴极的玻瑵壳計数管中，如玻琌党接地，則阳极与玻渡党間会发生放电，电导率高的軟玻璌党与附极間的放电龙为剧烈。这会影响使用寿命，而且，如阴极到地的滤波电容不够大，就会引起干把。薄膜阴极与金属粉阴极則无此現象。
8.4 準栍故电，光感与最大計数率 在使用話数管时，切不可把电压加得过高而使計数管陷于連綪放电的情况，因为这将使計数管受到軗时的和永久的損害。特別是有机㖕数管，由于放电中猝灭气作的分解，有时几分錚的强烈放电可使計数管完全損坏。造成这种損失的最常自的原因是：使用者希空量出整根坪曲経一从起始电压直到开始漸緒放电——以便把計数管的工作点选在场的＂中点＂。 实际上，以較＂中点＂路低处为工作点的作法就对早期的棵很短的㖕数管于适用，因这样较能容忍高压电压的波动，至于

現在已定型的大量生产的計数管，一般都具有很筧的泝，其工作点业已由制造者規定。选用＂中点＂的說法是有害的。如为了洎量场长也不用量到开始連綪放电．因为坼的終点是以乱萁計数过多，坪胢綫上赺本标誌的。所以在測量玶曲綫尾部时，应很緩慢地增加电压；如发現坏有明显的上趋急势，舁应停止升高电压．各种計数管坏尾部的形状不同，有的䚴数管坏終結时比較突然，不熟悉的人就很难及时覚察，至使計数管連續放电．所以非必要时，不必企图測量坪的尾部。

此外，由于記录电路发生故媁；访数管虽已工作，但定标电路沒有开动，也会使人以为聞压还未达到，而把电压增加得过高，造
記数时，就应該断开高压，进行检查。此外，因高压电源設计或使用不当，便詰数管暂时（例如在刚接上电豲后的短时期內，或在轉动堣整电压的㫌鈿时）受到严重超过所需值的电压，也会使管放电．

当发現計数管放电之后，应主刻断开高压（祂断开＂計数＂开关是沒有用的）。这里应注意，由于連綪放电时，脉计过多（或幅度变小），有的定标器反而不能記录，或所有氛泡都＂亮＂而机械計数器卡住不动。所以当加于計数管的超过电压很高时发現定标器有异常情况，就应荄注意发生連㬵放电的可能。

在发生連絤放电以后，計数管的忓可能变短变斜，本底增加，有时还对光敏感。如把偐数管撋罩几天，这些現象可能部分減弱。所以最好咔放过电的計数管体息几天，使用前应重新測䞡其性能。如果在刚陷入放电后，急于測量坪的范围，計数管极易再次䧄入放电，而造成更大的損坏。如放电过强或时間竝长（此时層压亦将明业地場高），計数管的性能晾很难于恢基了。

計数管的最髙㖕数率，并无很明确的界限，而且对于不同的計数管，跟制計数率的因素訑不尽相同。当草数率过高时，一般計数管可能发生坪特性变坏和乱萁計＇数所占的比率增高的現象，以及硬易于变成对光灵敏，有些計数管还較易于陷入放电。为了防止乱

埧比率堵加，一般䛃为在作啨确測量时，有机部数管的計数率最好不要超过每分鋎一万头，卤素管的最大計数率則比有机管高几倍。

新制的晾数管，一般很少是对光敏感的，但在使用一定时期后，特別是在高計数率高超过电压下，就可能变成对开敏感．而敏感的程度又随时間而异，长期＂体息＂或在低計数率下工作，对光的灵敏度会赛退。对于一只計数管，師使曾測出它对光手无反应，也不能保証在长期使用的㳡程中不变成对光敏咸。＂为使测量的結果可靠，仍需避光使用．計数管常放在鉛咢中使用，这也同时解决避光的問題．在玻瓖売討数管外涂满一层紅色及一层黑色的絶綠漆，也是防止光敏感的有效办法。
窗对軟 $\beta$ 射緒的吸收，可以很方便地确定云母的厚度，这种方法在实験室中常是很有用的。

从能量，牛襄期与易于获得等方面考虑，$C^{14}$ 是比这合适的放射源。图1．24表示源的結构；它是用有机玻璃制成的。 $C^{14}$ 匀与地分布在上方的托盘上的小槽中，晾用欂云母封住，支架上有



图 1.24 源薜毸結构


图1．25 实駺午畳

㖕数管的底盤上，如图 1.25 所示。 准直孔一定要做成鈍錐形，以娍低吸收片的散射作用，祇有这样才能使放在支架缺口队的吸收片与放在支架市面的等厚的吸收片（云林箇）产生同样的吸收作用。

在支架缺口中括入厚度已知的吸收片，師可作出如图1．26所示的曲綫。 用这个装置測量云母片或其他薄吸收片的肎度，比用天平方便，呧要用窗厚已知的訐数管把源的强度定出，就可以用来測量巳制好的計数管的箅厚，对几只窗厚已知的計数管实測的結果，误差小于 0.2 搳克／厘米 ${ }^{2}$ ，而測量时間不到一一分釛。
－。应暿注澺到，这种方法測出的結果还包含由支架下面到當表面的空气呞的吸收，所以当底盘边过厚时，需要扣除空气的等效厚


国 $1.26 \mathrm{C}^{\mathbf{4 4}}$ 败收典紋

的同型管校正，或用硬 $\beta$ 射綫的同样装置来求出其效率。

好于溥玻璃壁計数管，也可朵用类似的方法来测定管壁的平
面，即可求出管壁的采均原度。附带可提及，在用氞紼酸腐蝕管壁时，如用上法随时检查管壁厚度，可把管壁蝕薄到 40 毫克／厔米 ${ }^{2}$以下。 ；
图1．27是隆勒兑斯玻璃壁的吸收的䋨也能适用。


1，


## 8.6 有机及図素計数管的使用說明

有机釬型 $\beta$ 計数管的使用說明
1．此管以中心玻㻦䊹像子上引綫处为阳极，管壁为阴极．阴阳极絶不能接反。

2．工作时应保掉四杸玻㻦絕緣子的干燥和満洁无尘，以保証极間的良好絕緣（通常用脱脂䄸花沾酒精或乙醚扰擦）。

3．管堦电极上不宜任意焊接，尤漢是排气管的煏接处，更需要
免折断．

4．本管使用的电路条件，应符合：（i）串阻（高压到討数管）約为5－15 兆欧；（ii）电容（阳极到地的总电容，包括䓫生电容）小于 40 微微法；（iii）西本管給出电訊号較小，故要求电路具有較高的电荷灵篗度。
应立畋断开或降低高压，使放电停止），因此；
（i）在測是坏曲綫时，供給的高压应先由低逐瀜升高（当改变电压粗調时应先将細調鹤到最低）找出始計电压．再升到选定的工作电压．（ii）在測量坔曲綫时不得測到㛁曲綫的尾部．一般規定，不許地不需要測到始計电压政上 200 代。計数管的推荐工作电压为始計电压加 100 伏（不是坪曲綫＂中部＂）。（iii）在任何情兄下均不得使用台維斯检漏器检査計数管是否漏气。

6．避免使管要到机棫的損伤（如打击或掉在地上）。管上的云母窗很溥，极㫤破裂，应注意保护：不得用手指或硬物触之，不用时一定要用保护盖盖住。笛上如有灰尘，可用干毛笔桱整辟去。云母窗不得用水泪湿否則易分层破裂。

7．使用計数管时宜避光．
8．作精确实驗时应用标准源（强度与待測源相近的）經常校正．

9．有机 $\gamma$ 管䋨路条件与上同。
国素管使用說明 本管为以埧为猝灭气体的溥壁低压菌索計

数管，使用时字注意下面几点：
1．避多使管受到机械損伤．避免㹸破玻唡管壁。避免折㻱电极䌇。

2．保持电被間干燥清洁，以免漏电。
3．正負电极不得接反。
4．宜避光使用：
5．应于可靠的电学电路上配合使用．卖素計数管的工作性㑷上外部电路条件有关，为了获得較好的性能，要求：（i）高压毛源至阳极間的串阻应为5－15兆欧，（ii）服极至地的总杂散电容应小于 20 微微法，（iii）阳极至棚极間的耦合电容应为5—10微微法





囯1．29一种可用的敞䑤織路

处象联一5－10宨欧的电阻和10微放法电容（盽2．24），然后再接。电子綫路（有插坐的部数管司将此电阻电容按在座有）。
电源。㖕数管的工作电压宜选在坪曲緎的前半部，一般可在始計电唇以上約 60～70伏处。避冕使討数管受到过高的电压，在測量坪曲綫时，应尽可能不测至㘧的尾端。（i）由于一般电源标称电压値本不准确，所以应先由 300 伏以下逐漸井高电床求出姑计电压，再升至选定的工作电压。（ii）某些定标电路所附之高压电源，在灯綵未完全烧热时輸出电压可能过高，应加注意。

7．本管不适用于重合計数。


## 参 考 文 献

［11］A．Korff，Electron and Nucleay Counters，p．130．－
В．Векслер，Ионизационные методы исследоьаняя пзлучений， 301.
［2］Hill et al，Nature，London，258， 833 （1948）；
Metzger，et al，HeIv．Phys．Act．20， 234 （1947）．
［3］H．G．Stever，Phys．Rev．61， 40 （1942）．

［5］A．G．Fenton，＂PPS，60； 183 （1948）．
［6］R．O．Jenkin，Pro．IEE，98－2， 231 （1951）．
［7］Korff，Electron and Nuclear Counters，p．161．
［8］＇В．Г．чайковскпй，Приборьє и＂Текника эксперинента，6， 49 （1957）．
［ 9 ］E．J．Hartis，$/ S T$ ，33，＇No．8， 322 （1956）．
［10］R．D．Philips，Atomics，3，No．7． 169 （1952）．

## 第二章 図萦管的制备和性能

## §1．导 管

1947年李勒生首先报告制成了用微量监萦气体猝灭的盖革期数管，作为簡单的粒子探測器；与已有的計数管相比，它是有很多的优点的。

如似所周知，在盖革补数管工作时，外来粒子产生的原始电子，引起了管內气体的电离，直到放电中所产生的正高子的空間电何改变了电場强度，才使放电中止。 为了避免正成子在放电䅂止后到达阳极，社阳秛上产生次級电子引起再一㝳放电越見，需用活当的自猝灭充气，普通是社主要气体豈中加入約 $10 \%$ 的酒精蒸汽。这种結合；利用荎禹子与綇精分子磁撞时可使気中和而酒精电事的特点（由于能量关采，逆反应是不可能的），可健到达朚极的只有酒精资子，百它在中和时通过超前分解，释出多余的能量而不产生次級电子。由于作为摩不气体的有机蒸设，在到数中逐濑分解而挰失，或产生对性能有害的物兵，計数管性能便逐濑变坏直到完全失效，因酭它的使用寿命是有限的。在情性气体中加入徽量图索气体，也是起着営似的防止正丼子在明极产生次級电子的猓天作用，但这种猓灭气体不致因計数而强失，因此没有上述使用虏命的限制。

图素气休不但具有猝灭的能力，而且在很多的气体租合中还能消除情性气体的亚稳态，使自己电的，从而显茟增加电子产生电噙的效率使得开始計数的电压（閵压）显著地除纸（一般可由 1000伏可除至 3－400 伏）。
 $-70^{\circ} \mathrm{C}$ ）而不程結，因此消除了一般自狰到数管不能用于低盗的限

制。虽然蓖素气体带有对計数性能很不利的，极發的觬电性，但只


至可超过．

由于以上的原因，囟素詰数管虫然在制造上比敕费高，还是获


这种社数管可用于各种放射性工作及 X 射䋘行射工作中的弦度测量，度于＇不需过高的电压，又不易摸坆，因而便于使用。
如放身小性实駼空中不可缺少的污染监䇣器中。

在放射性同位素的各种工业用途中，常慗要能経常使用而不用重新柆正的探測器．在这一点上，卤案䚯数管又远屋过曾通的有加聮演狒灭㖕数篦。
放射性，并且其軧出电活很大，可以直接推动显通的钽安表，这样
強流管，
技术方面，克魯瑟（Croissette）等有較具体的报告 ${ }^{[1]}$ ，但在实宗制遺过程中，获得稳定性良好的管子的各項要求，佔缺三有关的报密。
 ＂文執及夽閧交献［2］，［3］，［4］，但一般誁来，已有的文献中材料是比僌少的，㔚一方面，影响計数性能的孝数又比較多的变化范围也大，因之使得对訪数管的特性与教电机构的了解受到限制。

鑑于處素管在各种应用上的优点，并考虑到各方面的需要，我僻自1953年起开始試制図貝管与強流管，科进行有类的性能測定与研究的工作，㝍之配合使用的稳压管亦附带地进行試制，中途持提出了几秛䡴定管型交有关方面作数量較多的制造。

本章生要分制遠与性能两部分，就以上工作提出了初步拫告。

交内所称的鹵素管后强流管，主要是指充氟溴泥合气体的谇数管。制嗢部分的主要工作内容是参照已有交献，利用易于获得的器材，
 －工作部門的大量生产，建立了有关检驗与老化的設备与方法。通过較多数量的实践，鄀明利用我們目前梨風的生产程序，可以得出大量的均与的，性能稳定的計数管。本章 82 中內容就是报告这几方面的工作。

性能研究部分的主要工作河容是在制成稳定性良好的管子基础上，对歯素管及强流管在放电性能上㝿行了一而列的研究，就放电机构及与实用有关的其区性能作了各方面的艰察。得到了一餭新的結果（見下交），無提供有关放电机构的一些看法。

对強流管的放电特性及电流特㤬作了一些測定。从电流特性的分析，得出正常作用情况下強流管放电礼构的特点，手得出放电与电流性能間的关系。 所得各項参数与电流特性的关系，有助于强流管的設計及使用。

## §2．图素管玫强流管的制备

我們在制造方面的工作，主要目的是利用复于得到的材料做出䦔遗寿命及使用友命較长，亦即計数性能稳定的計数管，并要求各管間性能差异輘少，各批管子的結果互柏可以重复。为此，怪㑚也进行了一些使㖕数管加速达到稳定状态的工作。在这个基础上，我們探求了暿数性能与各項参数的关系，以便选挥各項参数 （如几何形状，充气內容等）来得到性能較好的計数管。

現在开始介紹刺造的过程。圭要内容在于如何保䡛得到上退的稳定性。

因为純浄的（代学純或分析純的）滇較氯容易得球，判且处理此較方便，我們所制的管子是是用溥作为轩灭气体的。下面分三方面加以副譣：（1）材料的处理，（2）完制方法，（3）結果。
2.1 材料的处理 齿索管（在叙迅制造过程形一部分虽，一除特別誤明外，歯棠管一詞系包括強流管在内）材料的蒌择，首告要㹲

虑它对縣的耐鳋性，杨料的处理主要是为了清洁，同时扡为了垛強：抗溴的能力，在一定程度上也可以改善性能（如軥加阴顺表面的功四数）。所用材料包括玻㻦壳，阳板，阴极，䐂气，溴及其附属极料。

阴极材料的选择和处理对稳定性的影响很大．鵭，銀，鉻，䋎等貿金属不宜供大量制造用，我們只試用了下面三种材料。

不銹鋼或鉄鉻合金 这是使用得最广泛的材料，其中含路量越高，化学射性也越強。 我們采用的銅舍鉻量是 $17 \%$ 以上，并将表面鈍化来堷加它的抗钫性。咅酠过三种鈍化手纐：（1）浓硝酸浸触法一一浸触时間三小时以上；（2）王水浸䱰法——数分鋽，使形成微粒状表面，浸蝕时間峴王水活性的不同而异；（3）浓硝酸中电鳋退鍍，較（2）法得到更小微粒表面。（1）法，（2）社及（2）－（1）結合方法武用的結果差別㶳小：例如用（1）法及（2）法所做出的强流管，在 10 个月中，関压降低平均値分別为 23 伏及 21.5 伏；做出的鹵策管在 10 个月中聞压下降的平均値亦均为 20 伏左右。第（3）法与（1），（2）法比較倘未得出肯定結論．实际大量生产时第二种方法最为方便。

图 2.1 表示用上述几种方法处理明极而制成的強流管与菌亲管在約 10 个月內的啕压追移情况（为便于比較，其中管子只經一次預充，預充后不再烘烤）。可利用各型管子聞压与涣压的函数关采（胃本章 83 ）得出两种管子内溴压 $P$ 的減少量．如果假定溴压的
在 10 个月中吸滇量分別为 0.12 毫米永社 $\times$ 厘米 ${ }^{3}$（础流管，其中含澳量为 7 毫米手桂，容量約为 6.5 厘米 ${ }^{3}$ ）及 0.04 毫米永杜 $\times$ 厘米 ${ }^{3}$ （低厎卤素管，舍溴量为 0.7 毫米永柱，容量約为 22 厘米 ${ }^{3}$ ），实踪上其中可能有一部分说是为玻䡒所吸收的。可以有出，当溴压增加时，总的吸澳量不是成比例地增加，而是增加得比較慢。

值得提出，水汽的存在会使溴蝕增础，曾綴有充过溴的㖕数管激入水汽，経排气后重新充制印失去抗滇能力。过高的温度（如



图 2.1 聞压的证移
鉦化物导电溥膜 当二氮化錫蒸汽与在高温下（約 $500^{\circ} \mathrm{C}$ ）的玻琼（在空气中）接触时，在玻璃表面就会形戎一种唀明而有光泽
的顔色来估計，我們所作的薄膜面导宅率的数量級为 1 千欧（随厚度而异）。它与玻幅結合得很审固，很难用机械方法除去。一般强酸均不能痛玲，郎使氟氢酸退不易南接廨蝕，只是先腐蝕玻璃而使
洎与玻琌的接触面，因此用这种溥膜作計数管的阴极可以得到性能稳定的計数管，閾压变化不超过几伏，并且利用它可以做出澼玻琌壁的 $\beta$ 討数管。
著差別，图 2.2 表示在同一个封閉管中調換不同验被所得到的坢


图2．2 不同阳极的坪曲䋛
明綫。薄膜国极管对 $\gamma$ 射綫的計数效率，主要由玻㻦决定，在常用的能量范围內亦与不銹鋼朝极管相近。图2．3表示外䄱相同的汶唡种管子对同一放射源的計数效率之比。在強流管等小型管中，



图2．3 不鍍惘荓极与透明霉膜阴极計数管的效率比
石穌陸極 将胶状石墨涂在玻馈管内壁种加以烤洗处理，作为討数管的阴极。这种計数管的电性能随温度与历史而变迁，可能是由于石墨对滨的吸附作用随羞温度，石史等而育所变迁的緣故，因此在初期䳝驗后郎末継綪使用。

討数管的外売是用一般的硬盾玻璃，在吹制形成后加以洗滌及用洗液耻理。沒有发現不局来源及不同品种的玻璃材料在稳定性方面引起忖么差异。阳极主要采用鍾鐚絲。

滇是采用化学結及分析純的，井睴利用滇化銅的黄空分解得到，从計数效能上香不出不同来源的溴有什么差別。気气是采用光譜純的。
2.2 充制方法 簡图 2.4 是无制舍滇管子用的賁空采統，利用硅油护散泉D經常获得 $10^{-3}-10^{-1}$ 毫米我柱的箕空。


图 2.4 空空系㕁销団
为了減少溴的化学活泼性的影响，所有玻琌活門均采用硅脂，含漠的气体不經过扩散碄而由一专用机椷抽气机排出，扩散泵前的冷凝 $P$ 也起了保护扩散票的作用，机械抽气机前别用氮氧化堬吸滇剂 A 来保护机件，扩散丞甲硅油两年来只換过一次，排滨抽气机則每三个月挀洗換油—次。水銀压力計上亦放有佳油层以免与澳㣀接按触。

系統中儲存的溴液，在使用前經过結化变除气平綪 ${ }^{[1]}$ 。涣化銅分解产生的溴則六需要利用冷却利来純化，其結果相同。

充气时低的濞压的測量与文献［1］中相似。利用測高計及硅油表 S 可颉准至 0.004 毫米录柱左右。皮拉尼压力部 P 設計成可量毫米級压力（中心鍽緤直径 25 微米，长約 30 厘米，管內径 0.8㢆米）。它与油压力計䜋数比較可以检験滇的純废。

为了減免計数管制成后其中部件継絞与滨发生作用，我們試了几种不同的厷气方法，最后采用下淢斥法可以积常得到較好的結果。

将管抽室后在烤温約 $450-500^{\circ} \mathrm{C}$ 下除气一小时，其后降温至 $300^{\circ} \mathrm{C}$ 左右。＂待管泠到絎 $80^{\circ} \mathrm{C}$ 时頃无溴 $1-4$ 原米我杜。經約 8小时后再抽空，重复加温烘堵，此时露出烤箱的排气管内可以萛到逐濑有微量的棕程色凝聚物，表示有翋发泚的杂质存在。然后在常湯下再預充洝一次。經6—8 小时，将預无的溴抽出后就进行正式充气（对唀明薄膜阴极管，預充一炎就够了）。

为了使得充气均与，充气成分可点，排管的安排及充气步驟需要适当注意。当溴充入討数管后，除訐数管部分以外的重空系祛都抽室，以免充気气时氛气将这些部分的滇挤入計数管而使滇压。＂比例增大，充气完毕后要等一定时開再取下計数管，使得各管間，的溴和気达到平衡。 㸚样就可以得到践压基本相同的管子（相差在去 5 伏以内）。




图2．5（b） $40{ }^{\circ} \mathrm{C}$ 狫䞏下唉流管敂压的與型贫化
強流管則还要在 10 伦／小时的放射性强度下通过 100 微安电流經历 24 小时，用这样加速老化方法可以使計数管达到稳定状态，如图 2.5 所示．透明薄膜阴极的管子不必要經过老化过程。
2.3 結舆 現将㧴們制造得輘多的几种管子的性能的初步式验結果列于表 2：1．图 2.6 表示透明薄膜管在不同討数总数后的坪曲綫情况。图2．7表示強流管的电流与故射性强度間的关条 （見本辜§3）。

表 2.1

| 管 型。 | 溥壁媔素管 | 嫃 流 管 |
| :---: | :---: | :---: |
| 閶 乐 | $<390$ 伏 | $\sim 600$ 伏 |
| 推荐作用黾茊 |  | $\sim$ Vs +100 代 |
| 有效坪长 | －100 伏 | $<50$ 徵安（最大电流） |
| 斜 衰 | $<10 \% / 100$ |  |
| 死时 間 | $=120$ 微利 | 恢繻路 RC 值而定 |
| 使用温度范園 | $100^{\circ} \mathrm{C}>-45^{\circ} \mathrm{C}$ | （ $40^{\circ} \mathrm{C}$ ）－－ $25^{\circ} \mathrm{C}$ |
| 践压溫蒠系数 | $<0.1$ 代／${ }^{\circ}$ | $<0.2 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ |
| 本 客 |  | 极 ，敦 |
| 光 感 | （在直射旦光下）＜本疾 | 元 |
| 佇数或便用寿合 |  | 50 微安， 200 小时以上 |
| 壁 孛 | $\sim 70$ 竞克／用乐 ${ }^{\text { }}$ |  |
| 类敏 度 | 对 Rar 絞 $\sim 3.6 \times 10^{8}$ 㰠／伦 | 50德安租当于 5－10伦／小时的射綴強度（随絏路条件不同） |






## §3．虚素管的性能

南素計数管的主要特点已于前面介紹，它的性能与普涌的有机蒸气猝灭計数管有着一定的渼异。有关囟委計数管的性能及放电机构方面的文献目前还是較少的。其中比较一效的秸果及解释如下：
（一）在正离子向阴极沄动时，由于电荷交換：
$\mathrm{Y}^{+}+\mathrm{X}_{z} \rightarrow \mathrm{X}_{2}^{+}+\mathrm{Y}(\mathrm{X}$ 表示贯素， Y 表示愉泩气体），到达阴极的只有 $\mathrm{X}_{2}^{+}$，它在阴极中和时，尲过分解，释出多余的能量而不致在阴极产生次級电子（与有机蒸气猝灭相似）${ }^{[77}$ 。
（二）作为自㹫計数管，其中 $\mathrm{X}_{2}$ 分子数不因放电而永久提失，所以它的使用存命校长，对意外的放电也能忍受 ${ }^{[1,9]}$ 。
（三）由于在放电中形成的主气体 $Y$ 的亚稳态 $\mathrm{Y}^{2}$ 与猝灭气体 $X_{2}$ 文間的及应 $Y^{4}+X_{2} \rightarrow Y+X_{2}^{+}+a$ 清验了竝码（充絊情性气体管的）主常計数的 $\mathrm{Y}^{\mathrm{M}}$ ，科且增加了产生的电子数。当 $\mathrm{X}_{\mathrm{I}}$ 含量太大时，可以显著地蔵低开始計数的聞压 ${ }^{[2,7,8]}$ 。

[^2]（四）达到猝灭作朋所需要的澳解比例很少，拜且没有寿命方面的劺虑，因此閾压可以做得很低，手避观（五）中所迅甜点。用氯溴等高蒸气压的猛灭气体的計数管可以用于低温 ${ }^{[83}$ 。
（五）由于反睬
$$
\mathrm{X}_{2}+e \rightarrow \mathrm{X}^{-}+\mathrm{X}
$$

易于发生，而 $\mathrm{X}^{-}$主不能在阳极附近重番出象子而引起計数，因此夏素討数管的計数效率可能較低（在溴压高时）${ }^{[2,8,10]}$ 。
（六）粒子射入与产生可被記录的訊号間略有一些延迟 ${ }^{[79,11]}$ ，但它与負离子或电子过渡时間无共同㓆处。在閾压低的計数管中还会在一段电原范围内发生称为振盓的連綪放电 ${ }^{[1,2]}$ 。
（七）計数管的㟁曲綫与外部綫路条件有关 ${ }^{[2,14]}$ 。
以上儿点中（五），（六）是不算产重的缺点。
鑑子曰前已发表的材料較少且不完全，其中出不乏互相不得的地方，又有些数据䨒針对找們現在的制造条件来測定，为了便于从制造上与使用上控制性能并进一步了解其特点与放电机构，我伲进行了一些性能方面的实驗，其初步結果报告如下。

理論及制造方面都很有意义。在交献中的有关閭压的数据中，关于気渙充气的数据 ${ }^{118.8 .12}$ 还是轍少而不易互相比較的，因此我們也进行了一系列測通。

严格地詋，閾压当为脉冲高度对作用电压的曲綫外延至脉冲高度为零的的电压，我們为覌察方便新采用丁用示波器看出的翰电永冲高度約为 30 譱伏时（約柏当于 $10^{4}$ 个雪崩）的电压，它与理想的閾居实际上是沒有区別的。对于含澳特少易于振盓（見本率
－§ 3．6）的㖕数管，我們仍按此定义进行測量。作用电压是利用 $0.2 \%$新的高压伏特計測等的。

测量的結果是按照維金生的站似閾压会式来处理的：

$$
\frac{B}{V_{n}}=\log \left(\frac{V_{n}}{a P}\right)-\log \left(\frac{X}{P}\right)_{c}, \quad[\text { 附录 (5')试 }]
$$

師 $\frac{1}{V_{n}}$ 对 $\log \frac{V_{n}}{a P}$ 应线为一根直綫，式中 $V_{n}=V_{i} / \ln b / a, b$ 与 $a$ 各为明极及阳极的平径，$P$ 为总压力，$B 与\left(\frac{X}{P}\right)_{c}$ 为由气体成分决定的二个恆量（夌看附录 § 1 ）。


图2．8 $1 / V_{n}$ 与 $\log \left(\frac{X}{P}\right)$ 。
图2．8表示其中的一組結果；各曲䋨在相当大的范围内确接近于直䋨，而在 $1 / V_{n}$ 大时略向上弯曲，$b / a$ 瀂大，发生弯曲处的 $\left(\frac{X}{P}\right)_{c}$ 也秀高，所以（至少对于 $b / a$ 不大的計数管）造成上弯的原因，是在阴极表面附近也有些群異电璃作用（ $n \neq 0$ ）而不符合上式推泬中的假定緣故，这种情兄大致发生在磁撞电离䇤界平径 $r_{c}$ 約为 $b$ 的 $1 / 5$ 上下时。

由类似的測量中求得的斜率 $B$ 与截点 $\left(\frac{X}{P}\right)_{c}$ 可見图 2.9 ，在我們的实驗范围内，$B$ 是与埧的浑度有关的，而 $\left(\frac{X}{P}\right)$ 。也只有在輘小的范围內才与浓度成直綫关系。


图2．9 5 与 $(X / P)_{c}$ 与含涣浓度
为了較精劯地显示眾极秋料与閾压是否有关，我們都比較了处于同一管壳内的不銹鋼与鐳化物薄膜二种阴极，其結果列在下表（表2．2）。

諽 2.2


|  |  | 國 压 | （伏） |  |
| :---: | :---: | :---: | :---: | :---: |
| 人阳 假 直 䄱 |  | 0.5 尞 米 | 0.125 重米 |  |
| 59，极村料 | 不琽銅 | 1101327.4206 | $874 \quad 303$ | 195 |
|  | 粅化物模 | $1103326 \quad 201$ | 875302 | 191.4 |

由此可見，在可用的漠辰范围外，上迅二种阴极具有相同的興压（与图2．9 二致）。

当在气体中加入第三微量成分鴵时，一般辟以增加闃压（这与克鲁瑟的を发表的結果 ${ }^{[11]}$ 不同，与华德的結果 ${ }^{[13]}$ —致），可自图2．8



或 2.3


| A \％ | 0 | 0.23 | 0.16 |
| :---: | :---: | :---: | :---: |
| 戌 压（伏） | 375.5 | 380 | 385 |

根据國压測量的結果，主要决定䜿压的是滇压，突压所起的作用不大，因此在設纾中领压可以全由其它方面的考虑决定。

利用渭量經过气体放大的果离电流的方法 ${ }^{[20,21]}$ ，可以得到关子气体放大的数据。 这里是利用个射絨来产生电离电流的，因而无需特制的待測計数管；只要是极間电絕線良好的管子都可以用此法測量，气体放大烝数由下式决定：

$$
A=\frac{N}{1-N \epsilon,}
$$

式中 $N$ 为每一雪崩内的电子数，Ne 为該雪崩可以产生的新雪崩数。当 $N \in \ll 1$ 时 $A \simeq N$ ，如果朵用維金生的关于 $N$ 的近似公式，則有

$$
\frac{\log \tilde{N}}{V_{n}}=-\eta\left[\log \left(P a(X / P)_{c}\right)+\log \left(\frac{1}{V_{n}}\right)\right]
$$

［附录（4）式］
图 2.10 表示实測的結果按上式画出的图，对有机蒸気狜灭的計数管，$\frac{\log A}{V}$ 与 $\log V$ 嘀成一直絨，与上式符合。直綫外姡至 $V$ ，
与 $r_{1}$ 大致相符。 对歯素管亦可按上式㘧开 $N$ 与得到 $-\log \epsilon=$ $=2.05$ ．对別的低戓达图素訐数管測得的 $\log 6$ 如都在一2上下，根据曲綫斜率及 $\log \mathrm{E}$ 算出之 $B$ 亦与根据問压算出的相站。

在图菜部数管中，因为澳很容易形成負离子，升且在斉負高子

其中的常数是任意假定的）

到达阳极附近时也不会再释出电子，因此在用上法測量时，笑际放大电流 $I_{A}$ 与解和电流 $I$ 之比为

$$
I_{A} / I_{0}=A I_{c}+I_{\mathrm{ion}} / I_{0}+I_{\mathrm{ion}}=A^{\prime} \neq A,
$$

此处 $I_{\varepsilon}$ 与 $I_{\mathrm{ion}}$ 各为到达阳极的电子及离子电流。 所以上面的数值仍需用附录（18）式加以改正。从泙甾絨的斜率及改正后的 $A$ 的曲緎形状来看，这种改正絕不会使 $\log e$ 減少 0.6 以上。
通有机蒸汽猝灭的部数管。

从䦪压分析及气体放大采数的測皇（加上电子被俘获改正
个公式是很粗略的，在国委計数管中各种参数的很大的变化范围

于有机蒸气猝灭的䛨数管）除了由于跨极表面电堨过強引起的偏差外，佔需考虑利关于 $\ln \varepsilon$ 与 $\eta$ 为沍量的假定，后者只是近似的，而前者則为可疑的。所以求出的 $\bar{B}$ 値可能有系統誤差。但在放电

机构的脸論中仍以使用 $\boldsymbol{B}$ 值較好，因为此时上遮的間题局样存在，所以哭养当可部分抵消．

在我門部分数据中述显出 $b / a$ 較大的計数管的 $(X / P)_{c}$ 常略大．这一点倘待更多的数据来驗証．

在利用上面的数涺来予先估計計数管的闍压时，还須注意到在一般充气讨程中，对气体混合物鸤匀度的控制是体具体充制条

件而有所不同的。
3.2 每个豚冲的禺量 策灭計数通过計数管的电量 $q$ 的测量可以揭示計数管的雪崩增殖过程的一些性质，并且对計数管的其它特性（如死时間，坪长等）亦有一定的关系＂。
利用图 2.11 的装罝，当校正㳡的电察 $C$ 的端电压达到一定数值时即自动停止定标电路，就可以求出通过計数管的，总电荷达到指定值时所需的总計数次数，从而算出每个脉冲的电荷 $q$ 的平均值．利用多級反觬式的静电計可使阴极的电位在电容充电的注程中保持不变．电路考数中，䧄极奚統总电容 $C$ 的澌量用特別的电容电桥在計数管已連接在工作着的轎入电路的条件下有接量出前 （图 2．12）．这种电桥可以容忍較少的升联电阻，其工作頻率約有


田 2.12 喁寄势桥

[^3]104 赫．联結待測电容的导綫所引入的杂散电容的变化，一般䰠可以忽略的。


图2．13是一只含溴多的虞素㖕数管的电荷对作用电压的阴䋐，它数量的大小及届綫的形状坞与普通有机蒸气猝灭的計数管相似，轉折点前后曲䊗的斜率比亦近于 $2: 1$ 。当含泊量少时，曲綫



图2．14 不同㣀压下的䟿吓高度平偽


曲䄉形状变化的情形。图2．15所表示的低闘压計数管的电荷曲转可近似地用三段折緎表示，第一个曲折接近子 $m=q / Q=1$（ $m$臫放电电荷与阳柀上原来的电荷 $Q$ 之比），而第二曲折处表示双脉冲之发生，以上結果与文献［4］中已发表的 $\mathrm{A}-\mathrm{Br}_{2}$ 管的材料相似。这种計数管之 $q$ 与外部电容 $C_{3}$ 的关系較大。图2．16是 $\frac{1}{q}$ 对 $\frac{1}{C_{s}+C_{0}}$ 的曲綫，如果只从数量关系来看，可訜为管内有約 0.5 微微法／厘米的等效电容 $C_{\mathrm{ea}}$ ，它可以用作 $a$ 对 $C_{8}$ 的依赖性的变量，在双脉冲发生以前其数值的变化是不大的＊。

图 2.17 是另一种計数管（ $b / a$ 較小的低間压管）的 $q$ 曲絆，表示綫路依赖性的 $C_{\mathrm{eq}}$ 两在图中，可以看出，$q$ 可达甚大的数值，邮
近可看到不明显的电流双脉冲，电压再掬加劻成为单脉冲。

在强流管中，虽然溴压較高，但 $b / a$ 很小，当超过电压很小时，

[^4]

图2．16 䏡评电荷与电答


图2．17 滕冲电学（低溳国）
得到的是小脉冲，其管丙等效电容她不大，当毛压达到某一定怵时。脉冲䬣突然增大，而 $q$ 与 $C$ ：成直緒关棌，其間并无可分辨的双。

脉冲。
按以上实险結果，当澳压 $p_{\text {的 }}$ 或 $b / a$ 降低时，$q$ 随作用电压及电路参数变化的情况均与普通有机蒸气獆灭的計数管有显著的差异．

上面所迅的双脉冲的脉冲电流的示波图可兒图 2．18，图內还附有在管䖷用洸电倍加管测得的发光强度的变化，可以看出二者是相应的．第二脉冲的大小对电路的贲数的依賴性較強，两波峯間的間觜为数微秒，与电容 $C_{6}$ 的关系不大，当作用电压堛加时两波紧即移近，在更高的电压下即不能分辨。


按維金生理䛴，如果阳极上原来带的电量为 $\dot{Q}$ ，而脉冲电荷 $q>Q$ 时，雪崩奮殖讨程中电子便不可能完全达到綵上而輷时停留在阳极附近与正交子共存，形成电堨为零的＂中性区＂或＂等离子区＂。 由于空間电荷的分布突然改变引起了其罂灭作用的改变

$\ln \frac{1}{\mathrm{~s}}=5$ 計算时的电压，虽然在这几图例中的一个轉折点之 $\ln Z_{0}$㣂近于 1 （按雜金生理論莶等于 1 ），但这只是一种偶含，更多的数据表明此点之 $\mathrm{In} \mathrm{Z}_{0}$ 随充气及几何崣数之不富而有很大美异。
－严格倳来，中性区的产生嗃在 $q$ 略大于 $Q$ 的时候，因为在放电过程中还有一些毛荷由外部电容 $C_{s}$ 流向阳极，实驗上得到的轎折点的确也常在 $q$ 酪大于 $Q$ 的地方。中性区队的它子可以抵消正离子的作用，因而需要更多的离子对方能产生足够大的空間电荷狜灭作用，所以 $q$ 对 $V-V s$ 的曲稢应該如图 2.13 及 2.14 所示地問上折，但这样就不能解释高溴压管（及有机蒸气㙏灭管）的向下折的曲綫。应詨指出，在脉冲电荷方面的問是目前向未得到滿意的解决，維金生的关于 $q>Q_{0}$ 的 $q$ 公式 ${ }^{[22]}$ 是由于他在計算方法中的销定（关于电荷分有的与实际凊况不符的假定）决定的，而不是 －物理的据定决定的，所以还应䚳加以改进。

关于 $q$ 曲緎第三段上蹺而对电路的依賴性很強的部分，很可能县相当于附录 $\$ 1.2$ 中所討論的，在雪崩增殖的过程中，开始磷㩊电离的监界专径 $r_{c}$ 增大至 $e r_{c}>b$ 的情况，此时空間电荷郎失去其猝灭作用，因为得到很大的，主要由电路条件决定的脉冲。显然，气压及 $b / a$ 的降低，将使放电前的 $r_{d} / b$ 埥加而易于达到 $r_{c}>$ $b / e$ 的情况，这是与实驗得到的第二韩折点的位置随澳压及 $b / a$变化的趋勢相符的。（对于強流管可参看本章 84．1．）为了从数量上检驗这种看法，可設想在放电以前的临界半径为 $\boldsymbol{r}_{\varepsilon_{0}}{ }^{*}$ ，在雪崩垛殖的过程中，由于离子对的产生和运动，使得 $Q_{\mathrm{cap}}$ 的电荷由外部电容流入朋极，而使 $r_{\varepsilon}$ 增大至 $r_{c}=b / c$ 。此时所需之 $Q_{c_{2 p}}$ 将为

$$
Q_{c a p}+Q_{0}=Q_{0}\left(\frac{b}{e r_{c_{0}}}\right) \text { 或 } Q_{c \mathrm{cz}}=Q_{\mathrm{\theta}}\left[\left(\frac{b}{e r_{c_{0}}}-1\right)\right],
$$

而 $Q_{\text {cap }}<q$ ，其間的比例由空間电荷分有的情况决定［附录（11）式］．对图3．13，3．15及本章 54．1 所示曲箋的計算結果如表2．4。按下表所列，似来 $Q_{\mathrm{cap}}$ 大于 $q$ 。但是沿絲各点由于放电先后不同，

[^5]沗 $2.4^{\circ}$

| 管形 及 管 号 | 第二韩折学过之㲹 | $Q_{\text {cap }}=Q_{0}\left(\frac{b}{e r_{c_{0}}}-1\right)$ |
| :---: | :---: | :---: |
| 337 | $4.5 Q_{0}$ | 5.680 |
| Fe 88 | $2.4 Q_{0}$ | $2.9 Q_{0}$ |
| 1228（強流管） | $0.5 Q_{0}^{*}$ | $0.7 Q_{0}$ |

其电何分布是不鸤与的（尤以茎間电荷猝灭作用弱对为苃，参香本章§ 3.5 ）。由于电极几何上的缺点（如絲不匀不正或端效应）也会浩成电場及电菏分有的不均匀，因此在放电最强处之 $q / e$ 将显著地大于实驗中量得的平均值；而在低闘压图素管的雪崩堌殖时期又很长，由图3．16的脉冲电流图可以看出，在此期間的 $a$ 相当大部分都可释出为自由电荷 $Q_{f}$（或 $\oint_{\text {Cap }}$ ）。此外，还要䓔虑到 $r_{c}$ 的枮計也是不准确的，因此上表的結果㳅是合理的。

双脉冲的形成亦可以饭利地解释：在雪崩增殖的过程中，先是
成第一个波峯，但等到 $r_{c}$ 扩强到 $b / e$ 外，$N e$ 父重新增加，而骖成第二个波崒，亚然，第二波峯的大小对电路考数有很強的依赖性。当再增高作用电压面使此暫时的忤灭作玥不足以使雪崩增殖暫时收敛，双殔冲就不出現（或不能分辨）。
$q$ 对电路的依賴性与从空間电荷与电路这两种猝灭效度的相对大小的考虑的結果符合（附录\＄1．2），但是还很难从数解上驗柾。
3.3 死时間 图素討数管的死时間 $\tau_{d}$ 数値上大致与普通有机㶱灭討数管相当。

图2．19 表示移用同步示波器測出的死时間随着作用电压的变化，可以看出，在一般使用范围內（ $C$ 蹢小时），低甸压眾溸管的 $\tau_{s}$ 数値随作用电压的变化是很小的。这也是图索停数管的一个优点。这是因为在 $q$ 对 $V-V$ ，曲綫的第一轉折点以后，使阴极附近电場恢复至可以尌数时正离子鞘所处的监界羊徰随奢作用电压而增加，而正离子过渡时間因作用电压及脉冲电荷的增加而縮短，


圈2．19 作用电压与死时周
这两种效应部分地抵消了的線故。至于含溴多的高閾压計数管，其死时間随着作用电压的变化亦与普通有机管相似，如图2．20所


图2．20 豕时間与超过电压（不同镓压）

示．这是可以根据其 $a$ 对作用电压的曲綫与有机管的相似而推断出来的．比較图 2.20 的两条曲綫可知溴压奇变化（因而也是䦗压的变化）对死时間的影响不大。图3．21表阴死时間与気压成直綏关系，$b / a$ 的改变对死时間的影响亦不显著。


图2．2f＋压压与死时間
外部电路老数对死时間的影响可兄图 2．22（级图 2．19）。外部电容 $C$（或总电容 $C$ ）主要是通过 $q$ 的变化来起作用的，$q$ 对电容


图2．22 并联电容与狂时問

的体賴性更強的管子，莫死时間随电容的变化亦䪰大。
当外部电容 $C_{s}$ 过小时，由于电量的㳦少，䍩且沿絲是不均匀的（哯本章 83.5 ），用示波器观察到的死时間（各处死时間可能不同而測得著为小値）師显著地降低，至于強流管的死时間特性可見本章 84.1 。

以上的实驗結果給出了 $\tau_{4}$ 随各种夌数变化的情况，这些变化寀向都与理論上的期待相符合。对于低関压管，在 $q$ 大时，实驗結楽与斯太佛公式 ${ }^{[15]}$ 的計算結褁环不很符合，主要原因是斯太佛公式高估了空間电荷对縮短正离子过渡时間所引起的作用。
3.4 坪曲䋛特性 眚素計数管的坪曲綫特性如用相对坪长 $L=$玶长／閾压，相对斜率 $S=\Delta \ln n / \Delta \ln r$ 表示，一般可达 $L=20$ — $70 \%, S=40-10 \%$ ；与普通有机蒸气猝灭的偖数管（ $S=50$ — $20 \%, L=15-35 \%$ ）相当或較好，这种表示方法适用于比較㚜压相差很大的計数管。

訣数管放电特性眯与外部緎路有关，自然也会反映在坪井緒上 ${ }^{[2,11]}$ ，图3．23表示在一一般常用縖路参数范倳内坪的变化情兄。如果使用很小的手阻（如 0.1 兆欧），还可使坏更縮短（虽然它还是自灭的）。与交献中报註的暞同。 有时使用著常在計数管中与前級放大器間串联一个电阻以堿少有效分布电蓉，此时丞曲綫的变化如图 3．24。必䩄指出，在这种 $C_{s}$ 极小的掅岲下，号然坪长好象是增加了，但对一定范四队的岩阻值，在坪的中部可能发現易于陷大



湩繢放电的区域（晃本章§3．6），如图3．24中虚綫所示。当串阻很大时，这种現象（覀中振逿）較不易发生。


图2．24 串阻与坪曲緒
电路条件对坪的影响可从 $q$ 与死时間的变化两方面来理舴，㳦少电容可以淑少 $q$ ，应当是有利的，但当小到使死时間显著縮短时，則可能造成使坪变短或坪串掁璗的掅况。

强流管的死时間随 $R C$ 时間常数而增加，坪曲繒也在一定范围內随 $R C$ 增加，不論对強流管还是鹵索管，高的串阻值总是有利的．

图 2.25 表明哲长随氛压 $P_{\mathrm{Ne}}$ 的增加面增加，斜率随完蔵少，



与交献［1，13］中巴报导的一致；在常用的范围內，坪长与氛压虽有植綫关系，因为気医对間压的影响很少，所以在死时間与成本的考虑尤許的条件下可以尽量利用这个关系。

坪长与 $b / a$ 的关系，目前还缺少有关的系統的数据，应該指出，在有机蒸气㨓灭的計数管中，两电极专径之比 $b / a$ 必須保持很大的数值（～102），而图索狹灭管中臫无此限制，$b / a$ 可低至 10 或更低，仍具有可用的坪曲綫，这是对某些特种計数管（如針状註数管）設計上老利的地方。

渔压的增加虽也可以使坪增长，但閾还也显渚挰高，并当溴区过高时由于原始电子被埧捊获形成負率子而引起的計数效率的降低（附录 §．1．4）遮愈严重，所以好处是較少的。图2．26表示当其他的㭉件不变，而在很大范围内改变溴压时坪的綫变化的情观，与文献［10］中对氪溴管的材料椙似。可以看出，当溾压（或閾压）增 ＇高时，計数率降低而斜率增加，这个斜率主要是由計数效率的改变引起的，而不能全归之于乱受計数。当管內溴压高时，坪曲綫可外延通讨原点，郎相对斜率等于 1 ，这是因为在管壁附近产生的原始电子已衣能作为电子到达扫极，有效的計数容积显著地小于管的容积而与作用电压成正比的緣故［附录（19）式］，这种計数管显然是不易发生光感及乱票讨数的。


四 2.26 洪压与坪
一段内。这是一个斜率很大的弯曲的部分（图2．25，图2．28）形成了雨曲綫的监部，在此段内脉冲高度仍是均务的。在实験易于进行的范围内，歌数率的对数 $\log n$ 与超压的倒数 $\frac{1}{V-V_{s}}$ 大致成一直綫，用这种画法可比㫫不同管的膝部弯曲程度（图2．27）。


因 2.27 坼的䐒部
坪曲緎的膝部，可以用雪崩增殖过程中的統計桫落引起的計数損失来解释。每一拿崩虽然平坞可以产生 $\bar{Z}=\left(\bar{N}_{e}\right)>1$ 个新雪崩，但也有一个新雪崩他不发生的机会，因此便可能使放电在最初 $n$ 代内中断，引起計数狽失。按照事斯婴 ${ }^{[16]}$ 的討算（芳虑了气体放大及雪崩再生中的就訶蹗落），对于一个原始电子的計数强失的几率为

$$
W(n)=\frac{1}{\bar{N} \epsilon}=\frac{1}{\bar{Z}}
$$

如果到达繗上的原始电子平均省 $\bar{S}^{\prime}$ 个（假定是按泊松分布的），則

$$
W\left(\bar{S}^{\prime}\right)=\sum_{0}^{\infty}\left(\frac{1}{\bar{Z}}\right)^{s}\left(\frac{\bar{s}^{s}}{s^{\prime}} e^{-\bar{s}}\right)=e^{s^{\prime}}\left(\frac{1}{\bar{Z}}-1\right)
$$

能式良 $\log (1-W)$ 及 $\frac{1}{\bar{S}^{\prime} \log Z}$ 为变数画于思 2.28 ，画为 $\log 2$ 大致与超压成正比［附录（8）式］，所以在相当大的范围丙的計数率的对数与超压的倒数将成一㨁緎，筫然 $W=0, ~ \overparen{Z}=\infty$ ，并不在此直綫上而在其下約 $10 \%$ 外。

－图 2.23 梳計灌落引起的計数揁失
由图 2.28 可在出，当用 $\beta$ 射綫沿车径射入时椂率 $\Delta \log n / \Delta \frac{1}{r}$㫫用 $\boldsymbol{\gamma}$ 射綫均匀昭射时的 2 倍，这时团为沿年径射入的径迹較长， $\Psi^{\prime}$ 較大的秝故。同样，总气压的堬加，絲车径的增加与溴压的㳦低，均可以境加 $\boldsymbol{S}^{\prime}$ 而诫低斜率，与表 2.5 所列的棓果符含。如束按

淒 -2.5

| 管号 | 阿頃 | P 澩米 杜 | $P_{\text {Brs }}$倝米承桂 | $2 a$ <br> 妻旁 | $2 b$ <br> 妻米 | $Y_{s}$ <br> 代特 | $\frac{\Delta \log x}{\Delta \frac{1}{V}}$ | 硯 明 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Sn | 210 | 0.3 | 5 | $\sim 18$ | 300 | 11.26 | $P_{\mathrm{Br}_{2}}$ 不同 |
| 201 | Sn | 210 | 0.7 | 5 | $\sim 18$ | 357 | 1.55 | 阴极材䊈 |
| 135 | FeCr | 200 | 0.6 | 5 | $\sim 19$ | 336 | 1.5 | 不局 |
| $\boldsymbol{B}_{0}$ | Sn | － |  | $51^{-}$ | $\sim 18$ | 408 | 11.14 |  |
| A | Sn | 280 | 0.48 | 510 10 | $\sim 18$ | 346 | $1 \begin{aligned} & 2.3 \\ & 1.05\end{aligned}$ |  |
| R＊ | Sn | 280 | 0.48 | i2． | $\sim$ | 380 | 0.8 |  |
|  | St |  |  |  | －18 | 310 |  |  |
| $B^{*}$ | Sn | 180 | 0.31 | 12.5 | $\cdots 18$ | 310 | 1.2 | 挋力不同 |

本章 $\$ 3.1$ 中的 $\sigma$ 与 $\varepsilon$ 算出 $\log Z$ ，則 $\hat{S}^{\prime}$ 的数量为 10 向称合理。造成坪曲綫的斜率的另一个原因是乱真言数。图2．29是利用迟䋨重合法 ${ }^{[17]}$ 測得的在每次言数后乱点計数的时問分布的示例．在死时間以后可看到与普通計数管相似的乱異計数的峯，但其分布慗蕒。在接沂坪帅綫的尾部时，乱萁脉计則大量出現，以致在示波器上看不到均斎的脉冲，这現象可用来估計坪长。


图2．29 乱㣀较政的分在
附带可以提及在唀明薄膜阴被的計数管中，当作用电压在坪尾部时常可直到綵两端套管处发光較強，可能套管的結构对坪好有相当影响。
3.5 放电的传播及发光現象 在國素計数管中，放电边是先由原始电离发生的一段开始，然后沿羙絲传播的。利用一对光电倍。加管測量絲上不同位單发洗的时間的先后，可以确定这个現象扭測出传播的速度（文献［23］亦管利用対这种方法）。图2．30表示两•光电倍加管所量得的光脉冲，由其頂点間的趈離可算出苳3．31所表示的传播涑度 ${ }^{*}$ ，此涑度随作用电压变化的情况与普通有机气体猝灭的計数管相似，接近千一根直緒。

由示波图还可看出光脉冲的本寛度与教电在两倍加管間（約 8 厘米）传播的时間差不多，所以管內同时发光的区域是很长的。

榽上一个固定点的发光时間，随澳压及超电压 $\left(V-V_{s}\right)$ 的降低而堷加可达数十微秒。

[^6]

管号 $\mathrm{B} 21: 2 b=2$ 且米， $2 a=0.12$ 厘米，$P_{\mathrm{Ne}}=25$ 页米 $\mathrm{Hg}_{\mathrm{g}},{ }^{*} P_{\mathrm{A}}=0.2$ 遇长 Hg ，

$$
P_{\left\ulcorner\mathrm{r}_{\mathrm{q}}\right.}=0.08 \text { 厘米 } \mathrm{Hg}, ~ I=8 \text { 压米 }
$$



图2．31 传播速度
在放电的不同阶段，加上很数的猝灭脉冲，可以看到发先的能度立刻有根应的蔵弱（图 2．32）。因此，可以断言发光的时間与管內雪崩增殖的过程然烧时間是大致相应的，因而后者是很长的。电流䟿沖与光脉冲的形状相似她支持了这个論点：


图 2.32 捽灭昹冲（左）对政光朋们（右）的影响 －管号 $\operatorname{Sn} 3 R=5$ 兆欧，$G=9.94$ 微餁法，$V=332.4$ 仗
个数中大得多（为有机蒸气哜灭管的 $10^{3}-10^{4}$ 倍）。 但在放喁初
时間壈长至 $10^{2}$ 棓。最合理的解秝还是两代雪脆聞的乐均时間 $\tau$
光子本均自由路程的堌加，挂奮长了电子过渡时問，两者均能使
地説时燃烧时間迅速地随 $V-V$ ，变低。

文献［4］，［8］均指明在畨素訃数管放电时，可引起放电传橎的光子的自出路程可达学大之値，利用分段阴极管及处于同一管壳中的两只棓数管找們也得到了相同的結果。

佐伦（Zoonen），低聞最卤素管的迟延，实际上就是雪留增殖 （或燃烧）过程的㔊期。当带电粒子射入后，由于國栗管 $\epsilon$ 大，会个
古能得到可覌察到的訊号，而每一代所需的时間 $\tau$ 又很长，所以形成相当达的，大致与超底成电比的迟延。




近。

放电依有限速度沿絲传播的一个后果是当外部辣联电容过小时，在传播过程中阳极的电压显著地降低，以致在距粒子入射处愈远的地方，由于放电忿迨，所以放电強度出雭㳼。这种沿着綵上放电不均与的情况真至可用肉眼咱出（言数率高，发光强时）。其发光強度随传播时間的变化，及各段放电的电量随距离的变化可見图2．33．


传隠时間

3.6 振浢 在低闣压图素訣数管中，計数脉冲的尾部間或可以盾到由死时間处开始的一串很小的脉冲（間隔为数士微秒），这湥是克鲁瑟 ${ }^{[I]}$ 所覌察到的 $a$ 塑振湯。由于它侗的高度很低，所以不致被記录下来，玟种振盓的主要影晌是（当七出視得过多时）可能略为增长了有效死时開，在一般作用条珄下，它出現的几率数量級为 $10^{-2}$ 至 $10^{-3}$ 每头計数，当訐数率低时則更低；园此它所起的作用不大，在含澳較多的管中；此 $a$ 型振蕰即較少或不出現。

在閧压持低（例如 $<300$ 代）的覻索管中（某些低閏压有机气体
电的区域 ${ }^{[14]}$ 。 由示波器上可以者出，这是一种形状有些象正弦没




管号 $\mathrm{Sn} 3 \quad C_{=}=9.4$ 德微法，$R=5$ 兆欧，$V=308$ 伏
时，通过管內的电流約为 $10^{-8}$ 微安／原米，如图2．35所示。这类言个数管的审子㰢渡时問（恢拿时間）約为 300－400微秒，很容易算出，由于正离子空間电荷的作用，当作用电压増加时，緌附远的电場变化很少（馿有效电压变化很


图2．35 振造电流少）。

在易一豆发生报盪的区域內，振盪与計数闻是两种可能放电的形式。 当加上㲧压以后，常先計数一段时間然后于进入振㴤，图 2.36 表示在不同条传卜，在䧑入振遑以前可以訃数数目的年垮数 $\bar{N}$ 。亚然，桭䀇发乍的几季是是 $1 / \bar{N}$ 每次計数。
略与計数率成反比。
缺乏数据。

利用示波器常可省出 $b$ 型振盪所是在前一脉冲的死时間附遮开始的，开始的一段形状与 $\boldsymbol{a}$ 型相似（为观祭方法所限，不能聋椡所有的振㴤开始点）。




图2．36（b）㖕数享与作用电压

当从開压以下逐䡌增加作用电压时，先可以看到由外来粒子引起的天小相等的脉计，然后才进入易于振逿的区域。 如果計数
示的整根脉高曲綫，而在計数㟉高时則易陷入振蕰，得到图中靠着
示当并联于計数管的电容 $C$ ，改变时，易于振盪的范围的变化。如果 $C_{f}$ 洔小使放电不能均与地沿絲传播时，振逿范围便会扩大。根据以上情况，我門䚯为㣀正的閾压是在振逿以前脉计开始


出現的地方。有些文献中把上述現象訩作是＂閾前振盓＂，是不䂤当的。

此外，当綫路条件不利时，計数管还会在坏曲䋨中部有⼀段曷于臽入连緽放电的坪搔㹉湯区（即是这計数管是不会发生：$b$ 型振䕄的），这种情况当单位管长的却联电容 $C_{s}$ 过小时 $\left(q\right.$ 皮 $Z_{2}$ 显著


图2．39 䡉中振澄（上：光強庭；下：电压）管号 1480 （危气同 1337）$R=$ 5兆欧。 $C=21$ 嵩微法，事㳡 $=1.5$ 兆欧
这也是一串有周期的放电（图 2．39）．有时还可看到几种不同的脉高有规則地排列迅来。在陷入振逿前的計数时間也与計数率有关，如果欲捡查此种情况的存在，需用高的哵数率，不然便可能在測䞨圷曲続时涌过去而在計数率高时出现。
上远几种現象的发生，弄不限于在自制的管中，在鋁化物薄膜管中我們地曾观察到。 $b$ 型沶监可使間压軗时降低（告衰期为数
則未看到类似的現象。

作为一个可能的解释，我們詎为振盓現象是由于合湞量特少的卤率管具有很強的燃烧时荫而引起的。如果在管内殁成了多层正离子蜼，則与銓一脉冲的电荷 $Q$ 相当的 $\tau_{d}$ 及间报有效电压均会蔵低．由于 $\tau_{d}$ 显著琙少而雪㴯增殖时間因实际作用电压奖近聞压而显著增加，使得在被縮短了的死时問以后仍有新电子产生，造成下一的的波系，如此継繥下去形成不断的振蕰。

至于多层正离子鞈如何形成的閏题，可以設想，在每㰠計数后近死时開处有一段时間 $\Delta T$ ，当时的阳极有数电压处于一定范围内，如果这时进入了一个外来粒子，便会造成具有綋短了死时問的新脉冲而符合前述情况引起多次的或不断的牧逿。这样就很容易寧明振䢙的几率变化（如与部数率成正此，随超过电压而娍少等）以及手联电容过小使放电沿絲不均匀时易出振愠等现象。
管的）閾压的江移。

## 3.7 結詷

（一）在掏素計数管中，各参数变化的范圈可以䛤大，根据本
除有显著的电子被俘获現象外，其特性与有机蒸气猜灭計数管相近；而后䔬的性能則与它有很大荎异。这曾先表現在其放电更发北的时間很长及每一脉冲的电荷随工作电压及串路条件变化的規杽上，其死时間的变化垷律地相应地改变。

前一羑异，只能用两代雪崩異的時間很长来解䉽，第二个差异可以部分地通过对图素管放电対程中室間电荷及电路（阳极电位的降低）的猝灭作用的变化的考思来理解。在低暍压歯素管中，有时反而是主要依靠电路的猝灭作用来使放电終止的，低閖压茵絮管昕特有的双脉冲亦可从空間电荷的猝灭作用的变化得到解释。
（二）低閾压囱素管的雪龧再生系数很大，因为在放电中每个䨐崩中的离子对数很少，＂t是計数＂迟延＂現象的一个原因。
（三）不同大小及充气的离䒬管的萄压一般符合子維金生公式，通过对䍜压的分析（結合 2 ）得到了一些对分析計数管放电現豪很重要的常数。
（四）雪崩增殖过程中的祛計起优引越的計数損失造成了鹵美管坪曲綫的㯃部。高澳压管的坪曲綫的斜率主要是負离子的形成引起的。
（五）振滥現象除文献中已报告的两种外，在一定条件下，在坪曲綫的中部也能发生連続的振盓。苦型振盜的发生几率与計数

（六）本节在各奔数常用的数值范围帄，給出了各参数的变化 （包括电路条件，特別是阳极紊統的电容），对南美計数管性能的影觛的数据，

## §4．强流管的性能 ${ }^{-}$

1950 年勒文 ${ }^{[199]}$ 等提出，特制的禀案充气計数管在射緎作用下产生的平均电流可以作为射䋨剂量率的量度。他們指出这种管子在強 $\gamma$ 射絨（强度 $\sim 5$ 伦／时）作用下可以产生 50 微安左右的电流，而且电流大小与射緒強度的对数大略成直絨关系。其后罗斯姆 ${ }^{[20]}$智提到类做性质管子的充气与几何形状的大致范围。具有这种性


㽧2．40 貀流管白路
$\mu$ 为湦程在 100 微家左右的电流表。 $C$为电路的杂散电案，$R$ 为串接电限（部分可調）能的图素管，我晸叫它为強流管。

強流管作为剂量率仪时，常利用凂状放电稳压管 （見附录 I § 3）来获得稳定的高压电流．图2．40 表示此类刑量率仪的䋨路图。

选用活当的完气，几何等夌数后，我俳也制成了具有上泼性能的强流管。科对 ＇t进行了一些性能的測定。＇結果指出，强流管在工作策件下的放
助于对強流管作用的基本性盾的了解，科从而可以定性地或牛定量地提供对不同量程要求的强流管在謌㖕及使用上的一些数据。同时，作为普通低压离紊管的一种极㟨情形，强流管的性能的研究也有助于对一龍囟素管作用机构的了解。

下面条芳将依次討論强流管的（1）放电特性；（2）計数性能与电流特性間的联系；（3）量程；（4）最大的电流特性；（5）应用方面的考虑。
4.1 强流管的放电特性 为了落得强流的性能，強流管与普通甾索計数管在几何結构上有着以下的区別：它的阳极半经与阳极手径的比伖 $\left(\frac{a}{b}\right)$ 較大 $\left(\right.$ 約 $\left.\frac{1}{3}-\frac{1}{40}\right)$ ，阴极牛径 $b$ 較小（可小㞺例

如 0.5 毫米）。这样的訐数管充以适当的䏤溴混合气体后，就有强流的性能。

强流管工作时每个䟿冲的电荷，当工作电压超过某一定值时＊，有一突变的堆加。普通稛素訣数管每夷教电电量 9 与阳极上原来的电量 $Q_{0}$ 的比值 $m=\frac{q}{Q_{0}}$ 在工作电压輘高时可达 $3-5$ ，而强流管在工作电压超过笑变点以后的 $m$ 可达 10 － 50 ，并且此时放电电荷以及其他性能如死时間，坡长等都与外部电路参数（串接电阻 $R$ 及总电容 $C_{4}$ ）有很大关系．，图2．41表示一个典型的脉冲高度与作用电压的关采曲緒，可以看出突变点利在小于 30 伏处。


图2．41 强流管脉滈与工作电压的关系注意在 630 伏在右，塗高有一跳跃的場高

突变点以前的脉冲高度（或脉冲电荷）的性盾，在数值上及与电路电容的关系上，都与低压图素算相近。图2．42（a）表示在接近突变点的电压下，小脉冲的高度与电容 $C_{5}$ 的美系。如果改画成电荷 $q$ 的倒数与电容 $C$ 的倒数之間的关系，㿟得到一根直䋨［見罣 － 2.42 （b）］，就和图3．14相似了。

在突变点以后的大眿冲的电荷 $q$（用 3.3 ，节所迌的方法測定
有可能相单于 $m=\frac{q}{Q_{0}} \sim 10$ 以上的滳况，此时突变点就可犾为在閣匡处。


國 $2.42(\mathrm{~b})$
图2．42 工作象压佂于突变点前的脉冲大小与泋接电容的关系的），大致符合下列关系［見图2．43（a），（b）］：

$$
q=k\left(C_{i}+C_{\mathrm{in}}\right)\left(V-V_{2}^{-}\right)
$$

此姆 $k, C_{i n}, ~ V_{2}$ 是怔量，$C_{\text {ia }}$ 是妏于 10 微微法的一个定値，$V_{2}$ 是低于閏压的一个定値。类似䍒 2.43 （a），（b）的数据表明；在同粎



关于突变点的超过电压（ $V_{1}-V_{s}$ ）与強流管結构考数之間的关系可見图 $2.44(\mathrm{a}),(\mathrm{b})$ ，阳极半径与阴极车经比値的增加，埧原
是2．43（a）


国2．43（b）


$$
\text { 白䍖 } q=1.14 \times 10^{-12}(V-V,+50)(c+22)
$$

或氮压的降低，都可以減低突变点的超过审压値。可以注童玨，䙡应于突变点超讨电压降低时，这些夌数的改变都是使得开始发生
在閜压外。
（ $V_{1}-V_{d}$ ）随电路参数的改变不显著。
从以上所述的工作电压超过突变点 $V_{1}$ 以后的大脉诸的性固


滇分压（b）与b／erco（c）的关系
及其发生的情况香来，大脉冲放电很可能是处于 $\gamma_{0}>b / e(e=$ $=2.718) ~$ 的情况，正如附录§ 1.2 中紂諭正缡子空間电荷的猝灭作用时昕指出的，如果在放电过程＊中 $\gamma_{c}>\delta / \bar{e}$ ，則正禹子电荷的增加反而会增大气体放大倍数［附录（12）式］，因而有可能†失去空間电荷的猜灭作用，子是得到电荷特別大的脉冲，而脉冲大小将主要决定于电路条件所起的猝灭作用。

## 

敏改电路尔倠晾定。

图 2.42 （b）的数据可以用来分析空間电荷和电路条件所起的猝灭作用，利用附录（12）＂式可以算出 $\bar{\gamma}_{c}=0.3 b$ ，此处 $\vec{\gamma}_{t}$ 为放电过程間一种平坞犆，放电接近終了时的 $\gamma_{c}$ 还要大些（在放电前 $\gamma_{0}=$ $=0.2 b$ ）；因此可以設禁只要略为升高作用电压郎可使

$$
\gamma_{t}>\frac{b}{c}=0.36 b
$$

图 2.44 （c）表示突变点的超过电压 $V_{1}-V_{s}$ 和放电前的临界半径 $r_{6}$ 的关耏．这是根据三組不同含滇比例而改变总压力的强流管的数琚算出的，其中 $b / e r_{c_{0}}$ 是夾開压 $V_{r}$ 仅其対总压力的关系用附录 $I$（ 9 ）式算出的。间极上原来电荷为 $Q_{a}$ ，要使 $\gamma_{e}=\frac{b}{e}$ 所需的电荷为 $Q_{0}\left(\frac{b}{e r_{c_{0}}}\right)$ ，其差异 $Q_{0}\left(\frac{b}{e r_{c_{0}}}-1\right)$ 測在放电中补足．如
 $\varphi_{\text {cap }}$ 大致与超过电压成正比，就不难理解图中实验所得的直絨关系 $\left(\frac{b^{*}}{e r_{c_{0}}}-1\right)=$ 常数• $\frac{V_{1}-V_{f}}{Q_{0}}$ 了。当 $\frac{b}{e r_{c_{0}}}=1$ 时，实驗点与直，絞吅养异可以用阴极表面的 $\eta=b / X$ 値此时已不等于零来解释。

以上的事实支持了我個对大脉冲的形成的解释。
在发生大脉冲的区域內，强流管的＂死时間＂，$\tau_{D}^{*}$ 也显著地依賴于电路夌数。国 2.45 （a），（b）表示用示波器測出的大脉冲死时間。由图中可以看出，在一定电压下，$\tau_{D}$ 对 $R C$ 粗略地成直絞芙系。应脮詋明，这里的 $R C$ 値是不同的 $C$ 与不同的 $R$ 組成的广。

这个关系可以大致浢明如下：放电后由于正离子运动，中心䅗上負电荷逐漸辣出，約至 $\boldsymbol{\tau}_{\mathbf{0}}$ 时間后大部分負电荷都方释出（茹实測結果 $\tau_{0}$ 約为 10 微秒）。負电荷数値前面已給出为 $k\left(C_{5}+C_{i n}\right)$ 。 $\cdot\left(V-V_{2}\right)$ ，于是在电容 $C$ 上产生一附加电位差 $-k\left(\frac{C_{2}+\epsilon_{\mathrm{in}}}{C}\right)$ ．

[^7]

（b）

国2．45（2）死时間与工作电压；（b）死的間与客路亲件
（ $\left(V-V_{2}\right)$ ，此时阳极电位差为 $V-k \frac{C_{2}}{C} \frac{+C_{i n}}{C}\left(V-V_{2}\right)$ ．以后将通过 $R C$ 充电，因此阳被电位将按下式变化＊：

[^8]$$
V_{1}=V-k \frac{C_{c}+C_{1 n}}{C}\left(V-V_{2}\right) e^{\frac{-t-\tau_{0}}{k \bar{c}}},
$$

其中 ：是指从放电开始第起所唤过的时間。当 $V,<V_{1}$ 时，我琙可假定管子还处于死时間之肉，当 $t=\tau_{D}$ 时，$V=V_{D}$ ，因此，

$$
\begin{equation*}
\tau_{D}=\tau_{0}+R C\left[\ln k+\ln \frac{G_{t}+C_{\text {io }}}{C}+\ln \frac{V-V_{2}}{V-V_{1}}\right] . \tag{2.1}
\end{equation*}
$$

㮛据图 2.41 算出的不同电压下的 $\tau_{D}$ 与实测馿的数值国于图 2.45
（a）．对于这种近似式詋来，其符合程度是合人满意的。


图2，46 有效死时間示意琎
为了分析强流管的电流特性，我偪引入有效死時間 $\tau$ 的概念。它的意义可由图2．46看出，其中合面积 $A$ 等于 $B$ ，如果不考虑
等的（至少在計数率低的时候是这样的），因此腿容易吾出，如果假定在 $\tau_{3}$ 以前計数管根本不能产生放电，而在 $\tau_{\mathrm{g}}$ 以后放电脉冲就和正常情况一样。所得到的电荷量将和实示产生的电荷题一样。按定义很容易求出

$$
\left.\begin{array}{rl}
\tau_{3} & =\tau_{D}+R C \frac{V-V_{1}}{V-V_{2}}=\tau_{0}+R C \times \\
& \times\left[\ln k+\ln \frac{C+C}{C}+\operatorname{Cin} \frac{V-V_{2}}{V}+\frac{V}{V}-V_{1}\right.  \tag{2.2}\\
V
\end{array}\right] . V_{2}
$$

按上式算出的 $\tau_{8}$ 如画在图 3.45 （b）上，可以眉出 $\tau_{0}$ 随超过电厓的变化䡥不显著。图2．45（a）㳅画有从示波器上波形分有估計出的 $\tau_{0}$ ，与 $\grave{R} C$ 也大致成值綫关系，当然这样測出的 $\tau_{\mathrm{a}}$ 是不很精确

的。
强流管的坪长显著受外部电路羙数的影响。当 $R C$ 小时，坪較短，这是由于电路恢复到可以計数时，管中倘存有相当数量的正离子或其它可能引起乱稘計数的因棠。 而当 $R C$ 加大时，可以因为死时間的揘长而使坪变长。当 $R C$ 增至某一定值后，坪长改变就不显著了。图2．47表示坼长与 $R C$ 的关系。



4.2 强流等的电流特性及其与社数特性的联采•强流管用作刹量率仪时要求具有以下性质：（一）电流 $r$ 在一定范围內江似地
解大的电流（最大値超过 50 微安），以推动普通的微安計．图 2.48表示强流管的电流和鋸的 $\gamma$ 射綫强度 $\mathcal{R}$ 間的关系的典型曲綫。

第一个性盾可由計数管的放电参数导出。命 $n$＇表示当射絨强度为 $\mathscr{R}$ 时死时間等于零所应有的㖕数率，由于有效死时間为 $\tau_{3}$ ，則相应于射緒强度为 $\mathscr{R}$ 的的电流为：

$$
\begin{equation*}
I=\frac{n q}{1+\pi \tau_{\mathrm{s}}}, \tag{2.3}
\end{equation*}
$$

式中 $q$ 是脉冲电荷．当 $\left|n \tau_{0}-1\right| \ll n \tau_{0}+1$ 时，展开上式師得

$$
\begin{aligned}
I & =\frac{q}{\tau_{0}}\left[\frac{1}{2}+\frac{1}{4} \ln n \tau_{0}-\frac{2}{3}\left(\frac{n \tau_{0}-1}{n \tau_{0}+1}\right)^{3}-\frac{2}{5}\left(\frac{n \tau_{3}-1}{n \tau_{0}+1}\right)^{5} \cdots\right] . \\
& =\frac{q}{\tau_{0}}\left[\frac{1}{2}+\frac{1}{4} \ln n \tau_{0}\right] \equiv I_{c}\left(\frac{1}{2}+\frac{1}{4} \ln n \tau_{0}\right) .
\end{aligned}
$$



包2．48 电流曲箋
所以在 $n$ 值的一定范園內，$I$ 与 $\ln n(\infty \ln \mathscr{R})$ 断似地成直綫关索：直接由（2．3）式算出的数值表明，在 $0.16>\pi \tau_{s}<6.4$ 的范国内，用直綫 $I=I_{c}\left(\frac{1}{2}+0.48 \ln n \tau_{\theta}\right)$ 表示（2．3）式，誤差不大于 $2 \%$ 。

为便于分析实驗数据，可将（2．3）式改写为

$$
\frac{I}{n}=q-i \tau_{0}
$$

图 2.49 表示在 $R, C, V$ 为定値时，$\frac{I}{n}$ 对 $I$ 近似地成直綫芙采。


必須指出，当射綫㧧度 $\mathscr{R}$ 很大（亦即 $n$ 她很夫）时，管中教电多发生于 $\tau_{B}$ 后不久，$q$ 値就会䧕小。不过此时 $\tau_{0}$ 亦相应地娍小，两渚可以部分抵消，因此在国2．49中 $n$ 大时，$\frac{I}{n}$ 与 $I$ 仍这似地成直緒关系。但是当 $\mathscr{R}$ 值远超出量程范園时，每规教电的 $q$ 値将显著降低。此时 $I$ 値及因 作的䭪加而路有蔵少，如图2．43及2：49所示。因此实际可以量測的最大电流 $I_{M}$ 总略小于 $I_{c}=q / \tau_{0}$ 。

找俩利用图 2.49 所示的方法分析了一粗強流管在不同策件下 $\left(V-V_{s}=55-220\right.$ 伏，$R=1.5-5$ 兆欧，$C=10-35$ 微


国 $2.49 \mathrm{~J} / \mathrm{me}$ 与电流的关秋
国中（a）为一般图安管的数据．（b）为强流管的数据
微法，$I_{4} \sim 50$ 微贫）的电流直䋨，算出的 4 同枰可用式子

$$
q=k\left(\dot{C}+C_{\mathrm{in}}\right)\left(V-V_{2}\right)
$$

表示，如图 2.50 （a），（b）所示，图 2.51 表示分析曲続所得的 5
的 5 大致相符。鑑于这柈多析出来的数据是不易准确的，它們与
的。

附带指出，苦通有机蒸气猝灭計凝管和図素詁数管在 $n$ 皎低的范国内，电流曲綫把具有（2．3）式的形式，但是を侗可得到的最
和 $\tau$ 。的突化挸律也不一样。





（a）

（b）


$$
a=1.6 \times 10^{-10}\left(V-V_{s}+40\right)(c+b)
$$

范围，如果射絙强㪒用 $n$ 表示，則豆程大致为：

$$
\frac{1}{10 \tau_{n}} \leqslant n \leqslant \frac{10}{\tau_{\theta}}
$$



$$
\pi_{2}=\frac{1}{\tau_{0}}
$$



图2．51 •由 $N_{1 / 2}$ 算出之 $\tau_{\mathrm{g}}$ 与 $R C$ 的关棌

$$
\tau_{\varphi}=9.8 \mu S+2.2 R C
$$

此时按（2．3）式，

$$
\begin{equation*}
I_{m=n}=\frac{1}{2} \frac{q}{\tau_{0}}=\frac{1}{2} I_{c} \tag{2.4}
\end{equation*}
$$

相应的枌量値 $\mathscr{R}_{\text {咅 }}$ 为：

$$
\mathscr{R}_{\frac{1}{2}}=n_{\frac{1}{2}} / \epsilon .
$$

对光子的效率，計数管对电子的䂥数效孪三个因案决定，对一般不
平方厘米有数阴极表面产生的新数裹略小于 2 次／秒：

因为在保持其它厺数不变，只改变管长 $l$ 时，䠌冲电荷 $q$ 和有效死时間 $\tau_{\text {日 }}$ 并死显著变化 ${ }^{+}$，所以 $\mathscr{R}_{\frac{1}{1}}$ 应当和阴群有效面积成反比。图2．52所示的实验值表明，农各 $\times\left(l+l_{0}\right)$ 确近似地为一沍量，此处 $t_{D}$ 当表示计数管的端效孚。改变阴极有效面积，可以获得央专筧广范围的改变。所以阳极面积大小是获得不同量程的強流管的主要因㭠。

[^9]

洛 2.52 量程均数与管美的关系


园2．53 充気压力对最程均数的影呐
图 2．53．可以置出，在相当大的充气范围内（ $P=100-200$ 豪米氷銀柱，涭压 $1.25 \%-5 \%$ ），步随总压力而略睢，但当总应力低
結合效果，这种总压力低的强流管的性能及实用价值伺待研究。

从以上的数据还可以看出，$a=0.305$ 整米的强流管的 定住总大干 $a=0.175$ 毫米的。
时所用的 $R C$ 值是很小的，$\tau_{0}$ 的变化可能她起了相当大的作用。

最后应敬再验調指出，电路夌数 $R C$ 通过对 $\tau_{9}$ 的影响，可使 $\mathscr{R}_{\frac{1}{2}}$ 有 5 倍以上的改变．$R C$ 与阴极有效面积是决定 $R_{\text {雷的主要 }}$夌数：
4.4 强流簡的最大电清 第（2）小节提出的强流管呁第二个特性，就是要求強流管能粭出足够大的最大电流，$I_{M}>50$ 徵安。因为 $I_{M}$ 接近（略小）于 $I_{c}=\frac{q}{\tau_{s}}$ ，所以要求 $q$ 大而 $\tau_{\square}$ 小，强流管必幊要有大的 $\frac{a}{b}$ 値，使得能够以大脉冲形式故电，另一方面，$b$ 他不能夫，否則正离子运边时間使将加长而使 $\tau_{0}$ 增加。

图2．54表示在不同串阻 $R$ 时的最大电流 $I_{M}$ 与作用电压 $V_{0}$ 的关系，其中直緎部分的外引䋐与V䧿的交点均大約在大脉冲发生的超过电压外。可以从 $I_{34}$ 与 $V_{0}$ 的近似值綫关系得出＂等效电阻＂
端电压有很大部分时間在 $V$, 以下。在改变 $C$ 值时，情况与前面相做，由图 2.55 逐可以贯出，$C$ 的敢变对 $\dot{I}_{M}$ 的作用不大。


图 $2.54^{\text {（ }}$（a）最天电流 $I_{M}$ 与趐过电压的关系


国2．54（b）等效电阴与串阻

以上这些情兄都和从 $q / \tau_{0}$ 的变化推断出来的 $H_{\epsilon}$ 的变化趋向一致＊

在实际应用中，最大电流 $I_{M}$ 的値在一定 $R C$ 条件下有一个上限 $I_{\text {Lmax }}$ 。这是因为超过电医不能大于某一定値 $\left(V-V_{s}\right)_{\text {max }}{ }^{7}$ ，不然便会发生下列一种或几种的反常情况市：
（i）在恆定射䋨强度下，通謴強流管的电流 1 会发生經常的跳动，或其在电流野小（例如 $\frac{1}{2} I_{N}$ 以下）的时候更为显著；（ii）电流 $I$ 发生不覞則的追移；（iii）在強放射源取出后，$I$ 不降至与本底相应的数値；（iv）接上高压电源后，立師連綪放电。

图2．56表示在不同的 $R$ 与 $C$ 下跎 $I_{\max }$ 。 用图 3.54 近似地估

[^10]
## －†十 不是統针湾落。



国2．55 达到 50 请安的超过电压齿綫路参数的关采

郡出相应的 $\left(V-V_{s}\right)$ ．婟出它对 $R C$ 时間的常数关系。
最大电流的上限 $T_{\text {max }}$ 以及相应的 $\left(V-V_{s}\right)_{\max }$ 与充气压力及阳极粗細的关系如图 2.57 及 2.58 所示．当总压力增加时 $6 V$ — $\left.-V_{r}\right)_{\text {max }}$ 也随着塔加，与一般这美管的坪长变化相似。当阳极斗径增加时，$I_{\text {max }}$ 的增加兵由于強流管的＂等效电四＂減小的線放，$I_{\max }$朩随滇压增加而稍有㙁加，但不如增加氮压有利。


图2．57 最大电流与充気压力的关系


总充气压力（豪米 H ）
图2．58 达到最天电流时电丘䄪咯橧当于坪长（由于管的令刑性，本图只在一般锁間上有浂义）

由上图中还可以看出，我們采用的 10 伦管型 $(a=0.175$ 毫米，$P=200$ 毫米水銀杜），在 $R<5$ 兆欧时，是足以保証 $I_{M}>50$微安的。
4.5 在烚胡和使用强流管中的一些㮦虑。強流管在实际使用上的要求是：（一）具有合适的量程，即具有合适的 $\mathscr{K}_{\boldsymbol{K}}^{2}$ ；（二）最大电流 $X_{N_{0}}>50$ 微安；（三）䇾效电阻 $\frac{d\left(V-V_{j}\right)}{d I_{M}}$ 要大，使得由于电压迁移而引起的电流变化較小；（四）作用电压不宜过高；（五）程定性要好。根据以上几节对强流管性质的討帏，可以选择适当的管型及工作条件来满足这些要求。

几何条件 政变明极鮕有效面积（改变明教牛径 $b$ 和管长 $l$ ），实驗指出，可以在暞当大范囲內改变 $\mathscr{R}^{\frac{1}{3}}$（可以改变 10 倍以上），这样就可以制造不同量程的强流管。

为了使 $I_{m a x}$ 大，阳极半径 $a$ 宜粗。 $a$ 大时，达到指，定 $I_{M}$（ 50 微安）所需的超过电压也低，但是这时等效电樶 $\frac{d\left(V-V_{s}\right)}{d I_{M}}$ 較小，又不利于（三）的要求，假如提高串阻 $R$ 。，又会使 $I_{\mathrm{mxx}}$ 降低，以第一章所述的 10 伦型管子来説，如将 $a$ 从 0.175 高米改为 0.305 冢米，根据現有数据及稳定性的考虑，好处是很有根的。

充气户容 在的面所退的尤气坛力及气体成分的范围，气体总底力的增加讨以使 $I_{\max } B_{F} \frac{d\left(V-V_{s}\right)}{d I_{M}}$ 增大，但伺砷也使工作电压加高．增加漠的比例也起类促的作用，但好处要小些。

因为坪长及 $I_{\mathrm{mxx}}$ 还与装配时风何立最是否正确有关，所以我僸在决定无气压力时，給了較大的安全系数，我們所用的漠压比例也輘大 $(3.5 \%$ ），原度要娍小因管丙溴坛的改变而引起的閾压的改变値，但是实际上澳被吸收的萋并不大（見本育 § 3．3）。所以在櫒管型中，可以将充气內容加以政变，使得作用电压再降低一些。

电路条件 強流管的放电特性及电流特性在很大程度上决定于电路的 $R$ 与 $C$ 的数値： $\mathscr{R}_{1}$ 随 $R C$ 的数値可以有几倍的改变，


有一倍左右的变化。所以应該强話地指出，对于同一强流管，只有在确定的电路条件下才，有确定的校正曲経＊。除对 $K_{\text {住的影响外，}}$单独增加 $R$ 可以使 $I_{M_{0}}$ 及等效电䧋減少。堦加 $C$ 一般可以增加 $I_{\max }$ ，而対等效电阻影响很小．考虑到要求（2）及（3），我們选接 $R \sim 2.5$ 兆欧为平均作用点。此时等效电阻为 $\frac{d\left(V-V_{A}\right)}{d I_{M}}$ ，当 $C$为 10 微微法时（由強流管极間电容及电路上的分布电容租成）， $R_{1}$ 䄪为 1 伦时。


图2．59 表示卡个月間可能遇到的䦔压下降（～5 伏）所引起的校正曲縐的誤差。

图 2.60 表示按（2．3）式算出的，由于 0.5 溦安（ $0.01 I_{c}$ ）的电流誤差所引起的 $n$（或 $\mathscr{R}$ ）的相对誤差。 实际上在 $I$ 接近于 $I_{1}$ 时，誤差还要大一些。

在要状故电稳压管和强流管的組合中，实际的超过电压总与設竍的电压有些差异，通常是通过敌翣 $R$ 来使 $I_{M}$ 达到 50 微安。为此，在固定的电限靠近滈压电源的一䖷串接一个可变电阻，$R$ 从 2.5 兆欧改变 $\pm 0.25$ 兆欧；就足以补偿 20 优的超过电念变化，不

[^11]

㳡这的由于 $R C$ 值的改变，将会引起 $\mathscr{R}_{1}$ 的改变。 $\mathscr{R}_{\frac{3}{2}}$ 的瑁对改变略小于 $R$ 的相对改变；稂据典型管的計管，$R$ 改变 $10 \%, \mathscr{R}_{1}$ 約。改变 $7 \%$ ，若畄射綫強度不变，$I$ 的变化小于 0.8 微晏。

## 

角电压垛加至—定值时有—突变的增长。有理由都为突委点标誌

定偖 $\left(r_{c}>\frac{b}{e}\right)$ ，使当时的空間电荷袁失了使放电趋問收敛的作

比等都显蓓地依賴于电路考数。一般謰来，在一定的过似条件下，
流管的工作性能蹢身了解。
（二）強流管的电流哑性与計数狌能之門具有一定的函数关
荷，有教死吋間石＂㛁长＂等），反之亦然。二者相符的特兄是令 人

二数决定。
（三）強裗管作为射綫剂量弯仪特的量䅗，三要由管子的几何

条件及使用时的电路条件来决定。在很大范围內立气的影响不大。

从量程及最大电流的要求可以适当地选择几何形玦，充气内容及电路条件来获得所需的管型。另外还要考虑到由于澳压可能略有改变而引起的稳定性的問挔。

## 参 考 文 觔

［1］LeCroissette，D．H．\＆Yarwoods，J．：／．Sct．Inttr．20， 225 （1951），
［ 2 ］Van Zoonen，D．s Prast，G．：J．App．Sci．Res．B3， 1 （1952）．
［ 3 ］Van Zoonen：J．App．Sci．Res．B3， 1 （1952）．
－［4］Van Zoonen：7．App．Sct．Res．B4， 237 （1955）．
［5］Clark，L．B．：Ret．Sct．Instru．24， 641 （1953）．
［6］Gomer，R．：Rev．Sci．Instrs．24， 993 （1953）．
［7］Present，R．D．：Phys．Rev．72， 243 （1947）．
［8］Liebson，S．H．\＆Friedman，H．：Rey．Sci．Intitu．19， 303 （1948）．
［ 9 ］Liebson，S．H．：Rev．Sci．Inrer．20， 483 （1949）．
［10］Shinohara K．\＆Abotsu，J．：／．Sci．Res．Inst．47， 80 （1953）．
［11］Gimencx，G．\＆Labeyrie，J．：Nuovo Cim．9， 169 （1952）．
［12］Loosemore，W．R．：P．I．E．E．（1950）．
［13］Ward，A．L．\＆c Krumbein，A．D．：Rev：Sci．Inssr．26， 341 （1955），
［14］Philips，R．D．：Atomics 3，No．7， 167 （1952）．
［15］Stever，G．H．：Phys．Rev．61，38，（1942）．
［16］Wijsman，R．A．：Pbys．Rev．75， 833 （1949）．
［17］Curran，S．C．＊Rac，E．R．：Rev．Sei．Ynstr．18， 871 （1947）．
［18］Krumbein，A．D．：Phys．Reu．79， 910 （1958）．
［19］LeVine，H．D．，DiGioranni，H．J．＊Coe，M．R．：Nucleonics，6，No．6， 56 （1950）．
［20］Loosemore，W．R．，LeCroissette，D．H．\＆Yarwood，J．：／．Sci．Instru．28， 384 （1951）．
［21］Rose，M．E．，Ramsey，W．E．：Phys．Rev．61， 504 （1942）．
［22］Векслер，В．，Грошев，X．и Исаев，В．：Ионяэацвонные методы пссле－ дованяя пзлученй，стр． 169.
［23］Wilkinson，D．H．：Ionization chamber and counteri（Camb．Univ．Press Cambridge，1950）p． 183.

## 附 录

## §1．有关公式之推演

A——体故大具数；
a ——阳极半径；
b——阴亦年经；
$B=-\log \sigma / \eta$ ；
$c=c_{s}=c_{s}+C_{0}$（总电畕）；
$c_{\mathrm{D}}=1 / 2 \ln b / a ;$
$c=1 c_{0}$ ；
$c_{\text {eq }}$ ——等效电容；
$c_{\mathrm{in}}$ ——號流管电蕳关哥中之一沍

## 量；

$c_{\text {＿}}$ —电路中与阳极执联之电容（包括穼散电答）；
$e=2.71828$（自然对数的底）；
$h^{\prime}$ ——电于与哚体分子础推时形成負离于的几率；
$I_{0}$ —总电流，飽和电流；
$I_{c}-q / I_{c}$ ；
$I_{s}$ ——达到阳极之电子电流；
$I_{M}$ ——强流管（在指定作用电压及电路条件下）的最大捚流；
$I_{\text {Mnax }}-I_{\mathrm{M}}$ 之上限；
k——移运率（㗬数）；
2－部数管长；
L——标对坪卡；
$m-q / Q_{0} ;$
$N$ ——整崩內电子要数 $=N(a)$ ，或計数总数；
$N(r)$ ——臀崩在 $r \mathrm{D}$ 外的电子总数；
$N(1, r)$ ——第一次檽崩的 $N(r)$ ；
$N(1)=N(1, a)$ ——第一方雲崩的
$N$ ；
m——神数率（死时開为雾时）；
$\pi_{1 / 2}$ —与 $\mathscr{R}_{1 / 2}$ 相当之部数率；
$P$ ——总压力，訃数几率（負缡子）；
$P_{\mathrm{Br}_{3}}$ 一一咲医；
$P_{\text {Ne }}$ —氛压；
$Q_{0}=\frac{V}{\alpha \ln b / a}$（朱計数时阳极上之电荷）；
$Q_{\text {cap }}$ —故电中由 $C_{s}$ 传到际极上的电何；
$Q_{r}-$ 以标为中心，化径为 $r$ 之周杜內之道电荷；
$Q_{5}$ 一自由电荷（ $C \Delta V a$ ）；
$\boldsymbol{q}$ ——每次脉冲之电荷；
电荷；
－——乎经；

$R$ ——象接电阻；
R——射䌇䖽度（剂量羍）；
$S_{1 / 2}$ 一量程的数；
$s$ ——坪的相对斜率；
s——更始电于数；
$s^{\prime}$ ——到达絲上的原始电子数；
$V — —$ 电压；
$V_{n}-V_{s} / \ln b / a ;$
$V_{6}$ —临界半径处之电位；
$V_{1}$ ——展压；
$V_{5}$ —时間头 $s$ 时的㮩間阳极电压；
$\boldsymbol{V}_{i}$ ——大脉冲展压；
$V_{2}$ —脉冲宅何曲䋛外跕至电倚为宗时之色压；
$\boldsymbol{V}-V_{s}-$ 造过电压；
W——詮数損矢（統計）；
X——电場强度；
$X_{\boldsymbol{c}}$ ———开始磁撞电要时之 $X$ ；
$x=2 Q_{c} / b X_{c} ;$
$Z$－雪崩增殖率 $=N \boldsymbol{N}$ ；
$z_{0}=N_{(1)} \epsilon_{;}$
व——电离系数；
$\eta=a / X$ ；
$\epsilon$ ——零崩再生栗数；
$\varepsilon$ ——＂效茶＂’；
$\Phi=\int_{\eta=0}^{\left(\frac{p}{x}\right)_{a}} \eta d \ln \left(\frac{x}{p}\right) ;$

## $\boldsymbol{r}_{0}$ ———国量；

$x_{\alpha}$ ——死时間；
$\boldsymbol{z}_{D}$ ——大脉冲死邖間；
$\boldsymbol{x}_{4}$ ——有效死时間；

## 1.1 乌体放大系数与閧压

在半径各为 $a$ 与 $b$ 的同軸圆桂形电极間距軸心为 $r$ 处之电場強度 $X$ 为

$$
\begin{equation*}
X=\frac{2 Q_{0}}{l r}=\frac{V_{n}}{r} . \tag{1}
\end{equation*}
$$

式中 $l$ 为阳极长；$Q_{0}$ 为其上的总电荷，$V_{n} \equiv V / 2 \ln b / a$ ，而 $V$ 为阻极上的电位。当电子自 $r_{0}$ 处向中心运动时，沿涂所产生的电子总数 $N$（雪崩内的电子数）将按朌下式而增加：

$$
\frac{1}{N} d N=\alpha(-d r)=-\eta X d r=-V_{n} \eta d \ln r ;
$$

式中 $\alpha$ 与 $\eta$ ，均为 $\left(\frac{X}{P}\right)$ 的函数。假定在 $r_{0}$ 以内 $\left(\frac{X}{P}\right)$ 販已弱至使相应的 $\eta$ 値为䨐，則

$$
\begin{equation*}
\frac{\ln N}{V_{n}}=\int_{r=r_{0}}^{r=a} \eta d \ln r=\int_{\eta=0}^{\frac{x}{p}=\frac{V_{n}}{P_{d}}} \eta d \ln \left(\frac{x}{p}\right)=\varphi\left(\ln \frac{V_{n}}{P_{a}}\right) . \tag{2}
\end{equation*}
$$

所以 $\frac{\ln N}{V_{n}}$ 可对 $\ln \frac{V_{n}}{P_{a}}\left(=\ln \left(\frac{X}{P}\right)_{a}\right)$ 画成曲綫，其切綫的斜率等于相应于切点的 $\left(\frac{X}{P}\right)$ 的 $\eta$ 値，假定在相当大的范围内 $\eta\left(\frac{X}{P}\right)$ 近干

枑量 $\eta_{0}$ ，貼在此范围内：$\frac{\ln N}{V_{n}}$ 与 $\ln \frac{V_{n}}{P_{a}}$ 成直緒关系：

$$
\begin{equation*}
\ln \frac{V}{V_{n}}=\Phi=\eta_{a}\left[\ln \left(\frac{V_{n}}{P_{a}}\right)-\ln \left(\frac{X}{P}\right)_{c}\right], \tag{2}
\end{equation*}
$$

式中 $\ln \left(\frac{X}{P}\right)_{c}$ 为直綫外延截朝的地方，是一个由气休性盾决定的仾量。对此直緎部分面言，$\left(\frac{X}{P}\right)_{c}$ 可垗效地視作 $\eta$ 由寒突变为 $\eta_{0}$时的 $\left(\frac{X}{P}\right)$ ，相应于此 $\left(\frac{X}{P}\right)_{c}$ 的斗径 $r_{r}$ 亦可等效地視作＂开始＂碰愦电离的监界斗烃。

如果舍有 $N$ 个电子的雪崩所伴生的光子丞坞要产生 $Z=N 6$个新的同样大小的煘崩，則气体放大倍数

$$
\begin{equation*}
A=-\frac{N}{1-N G} . \tag{3}
\end{equation*}
$$

当雪崩的增殖作用不显落时，$N e \gg 1, ~ A \doteq N$ ，則

$$
\begin{equation*}
\frac{\log A}{V_{n}}=\eta_{0}\left\{\log V_{\pi}-\log \left[p_{a}\binom{X}{\dot{p}}\right]\right\} . \tag{2}
\end{equation*}
$$

当討数管进入 $G-M$ 訫数区，即 $V=V$ ，时，

$$
\begin{equation*}
N_{(1)}=1 ; \tag{4}
\end{equation*}
$$

此妓 $N_{(1)}$ 指倘未受到室間电荷作用的第一个雪崩內的电子数。由 （2），（4）式可知，对于 $V_{s}$ ，

$$
\begin{equation*}
-\frac{\ln \theta}{V_{n}}=\Phi\left(\ln \frac{V_{n}}{P_{a}}\right) \tag{5}
\end{equation*}
$$

或

$$
\begin{equation*}
\frac{B}{V_{n}}=-\frac{\log \dot{\varepsilon}}{\eta_{0}} \frac{\dot{1}}{V_{n}}=\log \left(\frac{V_{n}}{P_{a}}\right)-\log \left(\frac{X}{P}\right)_{c} . \tag{5}
\end{equation*}
$$

此䬦劳特容 ${ }^{[1]}$ 分析聞压的画法中 $-\frac{1}{V_{a}}$ 对 $\log \left(\frac{V_{n}}{P a}\right)$ 的直経。
如需估計在不同超压下的 $Z$ ，由（2），（4）可得

$$
\begin{equation*}
\ln Z=\ln (\dot{N} \varepsilon) \doteq \frac{V-V_{s}}{V_{s}}\left(1+\frac{V_{n}}{2.3 B}\right) \ln \frac{1}{\epsilon} . \tag{6}
\end{equation*}
$$

为了某些計算的方便，（2）式亦可写作

$$
\begin{equation*}
\ln N(r)=\eta_{0} V_{n} \ln \left(\frac{V_{n}}{r_{1} X_{c}}\right)=\eta_{0} V_{n} \ln \left(\frac{r_{c}}{r}\right), \tag{7}
\end{equation*}
$$

或

$$
\ln N(r)=\eta_{0}\left(V_{r}-V_{c}\right) ; .
$$



$$
\begin{equation*}
V_{c}=V_{\pi} \ln \left[\frac{b X_{c}}{V_{n}}\right]=\frac{2 Q_{0}}{l} \ln \left[\frac{l b X_{\epsilon}}{2 Q_{0}}\right], \tag{8}
\end{equation*}
$$

或
式中 $\frac{Q_{0}}{l}$ 为阳极单位长度上的电荷（附图 1）。如需求出 $N=N(a)$ ，


坿 图 1
紙需将 $a$ 代入 $r$ 師得。应硋指出，即使管內的电場分布与（1）式不同，只要管内能分的两个 $\eta$ 値各为 $\eta_{0}$ 及零的区域＊，（7）式師能适用。这給下面的副論以很大的方便。 $r_{c} / b$ 出是誩険猝灭作用时的主要参数，可由下式給出：


$$
\begin{equation*}
\ln b / r_{c}=(\ln b / a)\left(1-\frac{2.3 B}{V}\right) \tag{9}
\end{equation*}
$$

1.2 空間电荷对气体放大的影响，在雪崩中产生的正离子留在管肉形成正躰子空開电荷。今以 $q_{r}$ 表示在放电进行的过程中某一时到在斗径为 $r$ 的圆筒以外的正躰子电荷。相应的电子勋已达到絲上，其中—部分被正酠子束䎔任，而另一部分 $Q_{\mathrm{cs}, ~}$ 則流至等联于絲上外部电容 $C$ ，上．＂因此在手径为 $\times$ 的圓杜以内的总电荷将为

$$
\begin{equation*}
Q,=Q_{0}+Q_{\text {cap }}-q r . \tag{10}
\end{equation*}
$$

（1）当 $C_{s}=\infty$ 时，此时阳极电位 $V$ 。保持不变，故有

或

$$
\begin{gathered}
\int_{a}^{b} \frac{Q_{r}}{r l} d r=\int_{0}^{b} \frac{Q_{0}}{r l} d r \\
Q_{\mathrm{ca} \mathrm{\rho}}=-Q_{\mathrm{f}}=-\frac{1}{\ln \frac{b}{a}} \int_{\ln b}^{\mathrm{n} a} q_{r} d \ln r
\end{gathered}
$$

$$
\begin{equation*}
=\frac{1}{\ln \frac{b}{a}} \int_{Q_{b}=0}^{a_{a}} \ln \frac{r}{a} d q \tag{11}
\end{equation*}
$$

此时

$$
\begin{equation*}
V_{c}=\frac{2 Q_{c}}{l} \ln \frac{b}{r_{c}}+2 \int_{0}^{a_{c}^{-} / l} \ln \frac{b}{r} d q / l \tag{12}
\end{equation*}
$$

式中具有附标 $C$ 的量均指此量在 $r=r_{c}$ 时之値，第二項表示 $r_{c}$ 以外的空間电荷的作用．此双 $r_{c} \equiv \frac{2 Q_{s}}{l X_{c}}, X_{c}$ 为一枑量，拄＂开始＂䊬撞电躬处的电場強度。
此时

$$
\left.\begin{array}{rl}
V_{c} & =\frac{2 Q_{c}}{l} \ln \frac{b}{r_{c}},  \tag{12}\\
d V_{c} & =2\left(\ln \frac{b}{r_{c}}-1\right) d \frac{Q_{c a p}}{l}=2 \ln \frac{b}{c r_{c}} d \frac{Q_{\mathrm{cap}}}{l}
\end{array}\right\}
$$

可以看出，只有当 $e r_{c}<b$ 时于有空間电荷猝灭效应，在維金，

生的計算中 ${ }^{[2]}$ ，由于託为在正离子蛹以外的电場沒有改变，得到不同的結果。［相当于 $C_{s}=0$ 时之（ $12^{\prime}$ ）试］

附图2费示一薄层位于 $r_{s}$ 的电荷 $\Delta q$ 对 $V_{c}$ 影响，示意图所用来慗助关于猝灭数应的討論，在

$$
\begin{align*}
& r_{*}<r_{c} \text { 时 }, \frac{\Delta V_{c}}{\frac{\Delta q}{l}}=2\left(\ln \frac{b}{e r_{c}}\right) \frac{\ln \frac{V}{a}}{\ln \frac{b}{a}} ; \\
& r_{i}>r_{i} \text { 时, } \frac{\Delta V_{c}}{-\frac{\Delta q}{c}}= \\
& \doteq\left[2\left(\ln \frac{b}{e r_{c}}\right)\left(\frac{\ln \frac{V_{s}}{a}}{\ln \frac{b}{a}}-1\right)+2 \ln \frac{b}{r_{f}}\right]=  \tag{13}\\
& =2\left(\ln \frac{e r_{c}}{a}\right) \frac{\ln \frac{b}{r_{s}}}{\ln \frac{b}{a^{\prime}}}
\end{align*}
$$

由于事实上在 $r_{i}$ 处䊝不符合 $\eta$ 由 0 突变为 $\eta_{0}$ 记假定，实际情岲当如图 $I-2$ 中的实䋨所示，如果考虑到空間电荷本身的分布，則当更为复杂。显然；处于 $r_{c}$ 以外的电荷必然是具学猝灭作用的。
（2）当 $C_{s}$ 为有限値时，如果粒子是芉行于絲而射入，或是同时放电的长度（燃烧长度）与管长差不多，則正离子电荷可悓作是沿稀坞与地分布着的，而不用洘虑沿絲各处放电时間先后不同的間題。觡于在一般情况下，粒子入射方向对㴍冲大小利无显著影


附 2関，所以在上述假定下得到的結果，当亦可应用。 如絲长为 $l$
$C_{\mathrm{C}}=\frac{l}{2 \ln \frac{b}{a}}$ ，則有

$$
\begin{equation*}
Q_{\mathrm{c} 2 \mathrm{p}}=-C_{s} \Delta V_{G}=\frac{C_{s}}{C_{s}+C_{0}} Q_{f} \tag{14}
\end{equation*}
$$

式中 $Q_{i}$ 为自由电荷，当 $q_{0}=\sigma$ 时以前相当各式仍旧适用。此时

$$
\begin{align*}
& \Delta \ln V \doteq-\eta_{0}\left(\frac{1}{C_{s}}+\frac{2}{l} \ln \frac{b}{e r_{c}}\right) \frac{C_{r}}{C_{s}+C_{0}} Q_{t}= \\
& \left.=-\eta_{0}\left(\frac{1}{C}\left[1-\ln \frac{b}{e r_{r}}\right\rfloor \ln \frac{b}{a}\right]+\frac{2}{l} \ln \frac{b}{e r_{0}}\right) Q_{t} . \tag{12}
\end{align*}
$$

式中 $C=C_{s}+C_{\mathrm{a}}$ ，为国极系統的总电容。
在図素管中 $Q_{1}$ 有时很大而致上式不能活用，此时以㮛据附图1用图解法来分析其 $\ln N$ 之变化，比較方便。在示意附图 3 中，直䋨与曲綫的交点表示 $N \epsilon=1$ ，䬣放电开始收敛之处，可以看出，


防 異 3
处于 $r_{c}$ 以内的空間电荷不能使放电收敛。这时将会得到很大的主要由綫路芬数决定的脉冲。

如需計算每㰠放电的电荷 $q$ ，則先要算出正离子在放电終了时的室間分布及放电終了时的 $\ln N_{f}$, 这些都将率涉到很敏的計算。为大致估計外部电容对 $a$ 的作用，如果我閵非常粗略的假定以上分布及 $\ln N_{f}$ 与外部电路无关，則 $\frac{1}{a}$ 与 $\frac{1}{C}\left[1-\ln \frac{b}{e r_{c}} / \ln \frac{b}{a}\right]+$ $+\frac{2}{l} \ln \frac{b}{e r_{c}}$ 成正比，亦㓷 $\frac{1}{q}$ 与 $\frac{1}{C}$ 成一直績关采。 可以外延截 $\frac{1}{a}=0$ 軸于 $\left(\frac{l}{C}\right)_{0}=\frac{2 \ln \frac{b}{e r_{c}}}{1-2 C_{0} \ln \frac{b}{e r_{c}}}$ 点，相当子管肉具有等效电容

$$
\begin{equation*}
C_{e q}=-(C)_{0}=\frac{C_{0} \ln \frac{e r_{c}}{a}}{\ln \frac{b}{e \dot{r}_{c}}} \tag{12}
\end{equation*}
$$

値。
1.3 电子被綒获的几率与㖕数抒失 按場姆孙公式，电子在沿电場方向单位长度的路程中不被溴分子保获的几率为

$$
\begin{equation*}
\frac{d P}{d X}=-P\left[1.35 \times 10^{15} \times \frac{h^{\prime}}{k_{0}^{2}} \times \frac{1}{X}\right], \tag{15}
\end{equation*}
$$

式中 $k_{e}$ 为电子在荄达力下的运动卒，$h^{\prime}$ 为电子与混合气体的分子砬揘时被俘获的几裹。如果假定 $h^{\prime}$ 与 $k_{t}$ 均为沍量，則在計数管內有

$$
\begin{equation*}
-\frac{1}{P} \frac{d P}{d r}=+\frac{2 C}{X}=+c \frac{r}{Q} \tag{16}
\end{equation*}
$$

距中心軸 $r$ 处产生的电子到达阳极而不被俘获的几率为

$$
P(r)=e^{-r(r)},
$$

式中

$$
\begin{gather*}
2 C=1.35 \times 10^{15} \times \frac{h}{k^{2}} \\
\cdots y(r)=6.75 \times 10^{14}\left(\frac{h^{2}}{k_{\sigma}^{2}}\right) \times \ln \cdot \frac{b}{a} \times \frac{\left(r^{2}-a^{2}\right)}{V} \\
=C \cdot \frac{\left(r^{2}-a^{2}\right)}{V_{n}} \tag{17}
\end{gather*}
$$

假定原始电离在管內均匀地分布着，剘到达阳极的电子电流 $I_{\sigma}$ 与总电流 $I_{0}$ 之比为

或

$$
\begin{equation*}
\frac{I_{c}}{I_{0}}=\frac{1}{y(b)}\left(1-e^{-y(b)} \dot{y}=C^{\prime} V\left(1-e^{\frac{1}{c^{\prime} V}}\right)\right. \tag{18}
\end{equation*}
$$

$$
\frac{1}{C^{\prime}}=C \ln \frac{b}{a}\left(b^{2}-a^{2}\right)
$$

上成 $h^{\prime}$ 与负不变的假定誇张了 $V$ 低时的損失。
假定粒子是与阳极辛行地射入的，在距中心軸 $\boldsymbol{r}$ 处平均产生 $\bar{S}$ ，个原始电子，則到达阳极的电子数平坞为

$$
\bar{S}^{\prime}=\bar{S} e^{-y}
$$

所以产生計数的机会为

$$
P^{\prime}(r)=1-e^{-r^{\prime}}
$$

在整个計数体积中每一粒子被記录之几率：

$$
\begin{align*}
P^{\prime} & =\frac{1}{b^{2}-a^{2}} \int_{a^{2}}^{b^{2}}\left(1-e^{-a}\right) d r^{2}= \\
& =C^{\prime} V\left[-\ln \left(\bar{S}^{\prime}\right)+E_{i}\left(-\bar{S}^{\prime}\right)\right]_{\bar{s}}^{\bar{s}_{b}^{\prime}} \tag{19}
\end{align*}
$$

在电子被俘获的現象不严重时，写作下式比較方便：

$$
\begin{equation*}
P^{\prime}=1-C^{\prime} V\left[-E_{i}\left(-\vec{S}^{-\frac{1}{c^{\prime} V}}\right)+E_{i}(-\bar{S})\right] \tag{1}
\end{equation*}
$$

当 $\bar{\omega}_{s} \ll 1$ 时（当管壁附近的电子几今不能达間极时）則有

$$
\begin{equation*}
P^{\prime}=C^{\prime} V(\ln \bar{S} r) \tag{19}
\end{equation*}
$$

式中

$$
\ln r=0.5772
$$

此时䚴数率与作用电压戊正比，郎相对斜率等于 1 。

除子对針置形計数管外，在实际測量中很难满足离子径还与帆平行的椐定，昕以上面的計算只能显示出变化的趋期与大概的数値。以上結果綸于附图4．


附图4 資离子的形成引起的部数消失

## §2．鹵素 $\beta$ 管

如果 $\beta$ 管的阴＂被不用銅管或鉰片，而用上扰的薄膜阴极充以徽量点素作为猝灭气体，就成卤素 $\beta$ 管；也就是一端封以薄云母笛
方法．把这些东西混合在一起，放在 $10000^{\circ} \mathrm{C}$ 的电炉內加热到变成液体。然后㫦到蒸簡水里去，使它成为園体。把它烤干．再用干浄的的磨工具磨細，一直磨到不能再細为止。磨細后的玻璃粉加上蒸褔水，混合坞匀后要象泥浆一样，用肉眼看不出有小顆粒才可以。

准备好封 $\beta$ 管的陪备：呵調变压器，一个电炉 $\left(500^{\circ} \mathrm{C}\right)$ ，一个国
浄。封管用的工具如毛笔，装蒸緭水的烧杯等也要进行清洁处理，清洁过程和上上相同。

把玻璃液涂到管党上（玻璃壳要用鉆玻璃），不能太稀，即不能

辝它任意流动。最初一层要薄，斺且要涂得均匀。然后把云母活上去，再驮涂一层玻玮枌。把玻琌管売縵上石棉紼，要繞紫。最后把䂤筒夹好放到电炉內堵烘，温度 $450^{\circ}-500^{\circ} \mathrm{C}$ ，时間 $20-25$ 分钟．待它的顔色变了，把电热片的电源接通，至玻㻦粉溶化，就断开，同时也把电流电源断开．然后証它在电炉里慢慢冷却，到与外面温度相差不大時，把它取出。在拆开后，不能放到太泠的地方，最好放到石棉板上，寸不容易破裂。

## §3．稳 腀 管

这是为了配合使用訃数管及強流管的需要而制造的。这种管利用了在正离子运动率高的气体（资）中的同軸国筒間正的冤状放电的电流电压特性（夌看附图5），因为兌状放电电源比辉光放电电源小几个数量級，所以适于需要用电源（或綫路能供給的电曝）不大的場合，用来稳定計数管的高压或用作电子稳压敉路中的电压填数管，它的始燃电压，几乎就是作用电压（尤其是当电源电压加得很槾时），而不象輝光放电稳压管那样比作用电压高出很多（30－ $50 \%$ ），这也是在上迅应用中的很大的优点。


附图5 移压管的电流电岳特性
电压电源。曲綫的猞率 $\frac{d V}{d i}$ 是由于管內正离子空間电荷娍
線故。其数値可以通过气体及电极的大小的选择来控制。正的等效电陌是維持稳定放龟所必需的。

这种稳压管在进入輝光放电以前，能通过的电流，可达很大的数値（ $300-500$ 微安，悓几何与楽极情规而定），伹在实用上倘需

考虑到使用寿命（例如阴噴浅使絕釈体漏电）方面的問題。其最小电流是白管內雪崩增殖的統涍潾落决定的。溜的最小电流較大，但利不妨碍应用。本管敕采用图 5 的形式，用鎳有及鎳綵作电极，装配中特別注意保証宅杸的同軸，然后用水銀扩散泵按一般手耢推气手本充入氢气至适当压力（需㳀虑从系統上封下时受热膨胀而引起的压力变化）。制得的管經过24＊小时的按額定电流放电的老化，以除去开始一段时間內的毛压的变化（初約係低 10 伏，再静故一宣夜，下降約 5 伏）之后，作用电压䬣很稳定。

## §4．条种盖革有机語卜数管

盖革有机計数管 我們有各种大小的有机 $\gamma$ 管。采用的阴极有黄銅，紫銅，鋁，鉛，筫空噴鍍的金和銅，鍍銀，透諆阿极等。有針置形金属壳却玻璃党 $\beta$ 訫数管，有直筒形金属壳和玻领壳 $\beta$ 計数管，有金属売 $4 \pi$ 計数管，有鼓形 $\beta, ~ \gamma$ 計数管，有吹气式的大 $\beta$ 管，等等。

图素討数管 有各种大小的 $\gamma$ 管，$\beta$ 管．有測量气体放射性浢数管，暖水㧚式的 $\beta$ 和 $\gamma$ 管，不同种类的流体式和液体式計数管，花生管，紫外射䋨訃数管等。 采用的阴极有不銹蜩和透明明极。另外，还有稳压管和強流管。

几种特种卤素管的玶曲緎及結构 下面的图表示几种特种图素管的轨曲綫及結构。

表•部分特种菊素管的洮

| －管 名 | 閣压（伏） | 坪长（伏） | 沶斜（\％／100 柋） |
| :---: | :---: | :---: | :---: |
| 吅泡式的 $\beta$ 䉘 | 330 | $\geqslant 100$ | 8 |
| 云躴箴家管 | 330 | $\geqslant 100$ | 8 |
| 攽 流 式 | 320 | $\geqslant 100$ | 8 |
| 楽水瓶式 | 600 | $\geqslant 80$ | 8 |
| 流 动 式 | 550 | $\geq 30$ | 8 |
| 花 生 管 | 630 | $\geqslant 80$ | 8 |
| 盛 液 式 | 330 | $\geqslant 100$ | 8 |




胕图7 云母窞日虚素计数管



附图9 管水酒式図素討数管


附图10 流动式落素訣数管


附图11 花生管


附图 12 盛液式料数管


[^0]:    ＊如茄联 BK－3 妍。

[^1]:    ＊如苏联的 C 95 型。

[^2]:    仍是兒位的，如 $\mathrm{A} \rightarrow \mathrm{Cl}_{\text {，}}$ 。

[^3]:    

[^4]:    ＊在 9 对 $y$ 明践的韩折点間，各段内的 $C_{\mathrm{eq}}$ 的变化不夫。

[^5]:    

[^6]:    
    高度的蚹昆若有求得的传播速度与以上定义所得値无显者差异。

[^7]:    ＊$\tau_{D}$ 指一克大脉冲教电后到开始能够再产生大永冲效电之明所陥的时四。
    改变一管时，$\tau_{0}$ 的要化在 $15 \%$ 以内。

[^8]:    对結果影㗅不天。

[^9]:    化小于 $15 \%$ 。

[^10]:    ＊因为 $I_{M}$ 并不等于 $q / \tau_{\theta}$ ，库以这里只能比較它侧的变化趈势。
    队的＂坡长＂含义不问，不过它钥的案化趋势大致一样。

[^11]:    

